
Transformation and Analysisof (Constraint) Logic Programs

Sandro Etalle

Transformation and Analysisof (Constraint) Logic Programs

ILLC Dissertation Series 1995-7
institute for logic, language and computation

For further information about ILLC-publications, please contactInstitute for Logic, Language and ComputationUniversiteit van AmsterdamPlantage Muidergracht 241018 TV Amsterdamphone: +31-20-5256090fax: +31-20-5255101e-mail: illc@fwi.uva.nl

Transformation and Analysisof (Constraint) Logic Programs
Academisch Proefschriftter verkrijging van de graad van doctor aan deUniversiteit van Amsterdam,op gezag van de Rector Magni�cusProf.dr P.W.M. de Meijerin het openbaar te verdedigen in deAula der Universiteit(Oude Lutherse Kerk, ingang Singel 411, hoek Spui)op woensdag 7 juni 1995 te 9.00 uurdoorSandro Etallegeboren te Milaan.

1e Promotor: Prof.dr. K. R. AptFaculteit Wiskunde en InformaticaUniversiteit van AmsterdamPlantage Muidergracht 241018 TV AmsterdamenCWI - Centrum voor Wiskunde en InformaticaKruislaan 4131098 SJ Amsterdam2e Promotor: Prof. A. BossiUniversit�a della CalabriaRendeItal��e
This work has been partially supported by "Progetto Finalizzato Sistemi Informaticie Calcolo Parallelo" of CNR under grant n. 89.00026.69.Copyright c 1995 by Sandro. EtalleDipartimento di InformaticaUniversti�a di GenovaItal��esandro@disi.unige.itMaybe some additional info on the production of the dissertation.Printed and bound by Angassini Arti Gra�che, Genova.ISBN: 90-74795-27-7

Contents
Acknowledgments ix1 Program's transformation 32 The semantics of normal logic programs 92.1 Preliminaries : 92.2 Kunen's semantics : 132.3 Adopting a (possibly) �nite language : : : : : : : : : : : : : : : : : : 152.3.1 The semantics given by CompL(P) [WDCAL : : : : : : : : : 172.3.2 Fitting's Model Semantics : 182.4 Appendix. Proof of Theorem 2.2.4 : 183 Transforming Acyclic Programs 213.1 Introduction : 213.2 Unfold/Fold Transformation Systems : : : : : : : : : : : : : : : : : : 223.3 Termination : 253.4 Transforming Acyclic Programs : 273.5 Semantic consequences : 324 Transforming Normal Logic Programs by Replacement 354.1 Correctness wrt Kunen's semantics : : : : : : : : : : : : : : : : : : : 364.2 Correctness wrt other semantics : 504.3 Replacement vs. other operations. : 554.4 Conclusions : 614.5 Appendix A. : 624.6 Appendix B : 664.7 Appendix C (Safeness of the Unfolding Operation) : : : : : : : : : : : 67v

vi Contents5 Preservation of Fitting's Semantics in Unfold/Fold Transformationsof Normal Programs 715.1 Introduction : 715.2 A four step transformation schema : 725.3 Correctness of the transformation : 796 Unfold/Fold Transformations of CLP Modules 876.1 Introduction : 876.2 Preliminaries: CLP programs : 896.3 Modular CLP Programs : 916.4 A transformation system for CLP : 966.5 A transformation system for CLP modules : : : : : : : : : : : : : : : 1066.6 From LP to CLP : 1106.7 Conclusions : 1136.8 Appendix : 1157 The Replacement Operation for CLP Modules 1277.1 Introduction : 1277.2 Operational correctness of Replacement : : : : : : : : : : : : : : : : : 1307.3 An Example : 1397.4 Correctness wrt other congruences : 1437.4.1 Correctness wrt C-congruence : : : : : : : : : : : : : : : : : : 1457.4.2 Correctness wrtM-congruence : : : : : : : : : : : : : : : : : 1477.4.3 The non-modular case : 1487.5 Related papers and conclusions : 1497.6 Appendix : 1538 On Uni�cation-Free Prolog Programs 1598.1 Introduction : 1598.2 Preliminaries : 1608.3 Types and Modes : 1638.4 Avoiding Uni�cation using the modes \U" and \output" : : : : : : : 1658.5 Avoiding Uni�cation using also the mode \input" : : : : : : : : : : : 1728.6 A simpler special case: Ground input positions : : : : : : : : : : : : : 1808.6.1 Comparing Theorems 8.4.12, 8.5.18 and 8.6.6: e�ciency issues 1848.7 What have we done and what have we not done : : : : : : : : : : : : 1858.8 Conclusions : 1918.9 Appendix: reducing the number of matches : : : : : : : : : : : : : : : 193Bibliography 197Samenvatting 205

Acknowledgments
I guess it is now appropriate to thank those (many) people that made possible such anunlikely event as my promotion. In the known universe there's hardly enough spacefor doing this the way it is supposed to, therefore I'll just mention those that had adirect role in my writing of this thesis. Some people say that one year spent lookingfor the right master is not a wasted year. Personally, I had more luck, as I foundmyself with a team of three exceptional advisors. I'm talking about Krzysztof Apt,Annalisa Bossi and Nicoletta Cocco. They took me, they taught me, they guidedme, they lectured me, they helped me, they stimulated me, they supported me, theyscared me, they cheered me up, and (mainly in the ce�eebreaks), they explained mehow to write a paper on Logic programming. They had enough of me.Nicoletta is also coauthor of chapters 2 and 4, while Maurizio \H.B." Gabbriellihas been the coauthor of chapters 6 and 7.I want to thanks a couple of people who, despite everything that happened, infortune and in misery, in the (few) lucky periods and in the (endless) unlucky ones,always remained true friends. Max and Giuseppe are friends and, alas, competitors.Nevertheless, they resisted everything and helped me out in doing all the massivebureaucratic stu� that the average Italian PhD student is required to do, but that Icouldn't do myself because I was In Amsterdam. This included job and fellowshipapplications, and a whole bunch of stu� for which we were in direct competition witheach other. Some people were killed for much less.Remaining a bit longer in Padova, I want to thank all the members of the apart-ments in \via Pio X". Girls, you've been hosting me, always, even when I had nowhiskey with me. You've rebuilt me from scratch in many occasions (you've alsosmashed me to pieces more than once, but that's a di�erent story) and you've beenmaking me feel at home in situations in which I really had none. A big kiss toeveryone.Moving on to Amsterdam, where I've spent most of my last few years, I want tothank Saar and Floor, who, despite everything, always, always, always remained twogreat friends. I really have no words for saying how important you've been for me.Then I want to thank Maurizio who, in music, conversations, and logic programming,vii

Acknowledgments 1has been the colleague I always dreamed and never dared to ask. Aino has been afantastic house-mate and a great buddy in the endless nights at the Bourbon Street,the real research center of Amsterdam.Last but not least I would like to hug again the whole troop of the SweelinckOrkest. They gave a meaning to things that had none, and that's not easy. I'd reallylike to thank them one by one: Ingrid, Feico, Hester, Diederick, Anne-Marije, Steven,Geesje, Norbert, Marije, Maarten, Simonka, and there's another 70 of them so I'dbetter stop here.Genova, Sandro Etallejuni, 1995.

Chapter 1 Program's transformation
It is well-known that a good program has to be both correct (wrt a given speci�cation)and e�cient. A better program is also inexpensive. These three aspects are often incontrast with each other. On one hand, it is often the case that e�cient programs(and algorithms) are so complicated that they're di�cult to prove correct. On theother hand, the ones which are easy to prove correct are those that are simple andclear, which are often outperformed by more complex ones. Finally, because of theincrease in program's size that the modern architectures allow (and require), and thedecrease in the hardware's cost, the impact that cost of software has in the overall(software+hardware) expenses is more and more increasing. Of course the morecomplicated a program the more likely it is to be expensive.Source-to-source program's transformation provide a methodology for derivingcorrect and possibly e�cient and inexpensive programs starting from a speci�cation.The underlying idea is to separate the problem of correctness from the issue of ef-�ciency. To this end, the process of developing a (large) application is divided intotwo phases. First the programmer writes an initial program which may be simpleand ine�cient, but whose correctness is easily checkable. Secondly, this programis transformed into a more performing one. This latter is actually an optimizationphase. This may take several steps, may return a program which is written in thesame language of the original one and has to ful�ll the following three importantrequirements:First, It must be e�ective. In principle the optimization phase has to make up forthe e�ciency we have lost by writing a program which is (inexpensive and) easy toprove correct. In the logic programming area several strategies have been devised inorder to achieve such an optimization. Among them we should mention program'sspecialization and partial evaluation [60]. The techniques program's specializationallow to obtain a more e�cient program by exploiting the fact that the program itselfwill always be employed in a certain context, that is, together with an input thatsatis�es certain preconditions. In the Logic programming area, these techniques havebeen studied by Bossi et al. [19] and by Gallagher et al. [46, 45, 33]. An importantspecial case of program's specialization is the technique of partial evaluation (also3

4 Chapter 1. Program's transformationreferred to as partial deduction). This methodology can be applied when a part ofthe input is known in advance (say, at compile-time), and can be regarded as anapplication of Kleene's s-m-n Theorem.Secondly, the optimization phase must be at least semi-automatizable. Indeed,the task of transforming a program must be much more a�ordable than the one ofwriting one from scratch, and therefore it cannot be done \by hand".. To achievethis, the optimization phase is usually broken into several steps, in each step a basictransformation operation is applied. In the �eld of Logic programming, the mostprominent basic operations are unfolding, folding and replacement which are the op-erations studied in this thesis. The applicability of each transformation step is usuallyautomatically checkable; however, in order to achieve e�ectiveness, the sequence ofsteps to follow is determined by a strategy which may need human supervision.It must be correct. This is the issue we'll mostly address in this thesis. Technic-ally, we say that a transformation is observationally correct if the resulting programhas the same behavior of the initial one, i.e. if the two programs are observationallyequivalent. In this way, assuming that the initial program is correct, the problem ofthe correctness of the resulting program is reduced to the problem of the correctnessof the transformation sequence, and, ultimately, to the problem of the correctness ofeach basic transformation operation. Being available a formal de�nition of semanticsof, we say that the transformation is correct if the semantics of the resulting programis equal to the semantics of the initial one. Indeed, one reason why program's trans-formation (at the source-code level) are so popular in �eld such as logic and functionalprogramming is that in these areas there exists elegant and mathematical methodo-logies for determining the semantics of a program. These declarative semantics havebeen (often) proven equivalent to the operational ones, and, being de�ned in math-ematical terms, are much more suitable to be used for verifying a transformation'scorrectness.In this thesis we'll focus on source-to-source program's transformation, speci�callyin the �eld of logic programming. Therefore, when we talk of transformation we'llactually refer to this more restrictive kind. Other forms of program's transformationwhich we won't cover here are the compilation of a program into machine code andthe synthesis of programs from a given speci�cation language. However, for thislatter case, it should be mentioned that the techniques and the basic operations usedfor program's synthesis are often the same used and addressed in this thesis .Unfold/Fold TransformationsProgram's transformation techniques began to be studied in the early 70's. However,the �rst well-known formalization appeared in 1977, with the work of Burstall andDarlington [25]. [25] introduced for the �rst time the operations of unfolding andfolding, which allowed the development of recursive programs. Since then a largebody of literature has been produced on the subject. The transformation system wasthen adapted to logic programs both for program synthesis [30, 50], and for programspecialization and optimization [60]. Soon later, Tamaki and Sato [96] proposed anelegant framework for the transformation of logic programs based on unfold/fold

5rules. Tamaki-Sato's system also included a replacement operation, which is a topicwe'll address in the sequel. The operation of unfolding, consists in applying in allpossible ways a resolution step to an atom in the body of a clause. Unfolding isthe fundamental operation for partial evaluation [66] and is usually applied only topositive literals (an exception is [11]). Being such a \natural" operation, unfolding iscorrect wrt practically all the semantics available for logic programs.Folding, can be regarded as the inverse of unfolding, as long as one single unfoldingis possible. The main feature of this operation is that it can introduce recursion inthe body of a clause, therefore allowing optimizations which are certainly non-trivial.On the other hand, if applied indiscriminately, this operation may well introducein�nite loops in the program, and therefore its applicability has to be restricted bysuitable applicability conditions. Tamaki and Sato provided conditions which ensurethe preservation of the least Herbrand model semantics (as proven in [96] itself) and ofthe computed answer substitution semantics (as proven by Kawamura and Kanamoriin [58]). However, Seki showed that the system does not preserve the �nite failure setof the initial program, this problem is particularly relevant when we transform normallogic programs, that is, programs which use the negation operator in the bodies of theclauses. In [91], Seki provides new, more restrictive applicability conditions whichguarantee that the system preserves also the �nite failure set and the perfect modelsemantics of strati�ed programs. Since then serious research e�ort has been devotedto proving correctness for the unfold/fold systemw.r.t. the various semantics availablefor normal programs. Just to cite the most relevant works, we should mention Sato's[88] (in which he adapts the technique to full �rst-order programs), Maher's [67, 69],and the works of Gardner and Shepherdson [47], Aravidan and Dung [12], Seki [92],Bossi and Cocco [18] and Bensaou and Guessarian [14].The replacement operationReplacement is possibly the most general transformation operation for logic programs.Syntactically, it consist in substituting a conjunction of literals ~C with another con-junction ~D in the body of a clause. Clearly, for the syntactic point of view, thisoperation is able to imitate most of the other transformation operation. For instance,it can imitate the folding operation, and it can introduce recursion in the bodies of theclauses. On the other hand, being so general, if we want it to be also somehow correct,we have to restrict its use by suitable applicability conditions. These applicabilityconditions may vary according to the semantic properties that we are interested inpreserving along the transformation. In the �eld of logic programs, the replacementoperation has been studied for the �rst time in the context of de�nite programs byTamaki and Sato in [96]. Later, developments were provided by the works of Satohimself [88], Gardner and Shepherdson [47], Bossi, Cocco and Etalle [20], Proiettiand Pettorossi [79, 80] Maher [67, 69] Cook and Gallagher [32] and Bensaou andGuessarian [14]. For the technical details of each of these approach we refer to Insection 7.5.The applicability conditions for the replacement operations are usually undecid-able. Indeed this operation is to be regarded as a more abstract operation than,

6 Chapter 1. Program's transformationfor instance, unfolding and folding. We could say that while unfolding and foldingare syntactic-driven operation, replacement in semantics-driven. The interest in thestudy of the applicability conditions of replacement is due to the fact that (a) it isan extremely powerful operation, and allows optimizations which have been provenimpossible with unfold-fold transformations, and (b) it can be regarded as the oper-ation that lies behind the folding one: i.e. as we'll show in this thesis folding can beoften seen as a particular case of replacement in which the applicability conditionsare syntactically checkable.A basic applicability condition for the replacement operation, which is commonto all the approaches mentioned above, is that the replacing conjunction has to besemantically equivalent to the replaced one. Unfortunately, this requirement alone isnot su�cient to guarantee the correctness of the operation. The main problem is thatthe operation may still introduce an in�nite loop, in which case the �nal program islikely not to have the same expressiveness of the initial one. The approaches in theliterature di�er a lot in the method for avoiding the introduction of a loop. In thisthesis, in chapters 4 and 7 we'll propose new applicability conditions for it.***The system was then extended by Seki [91] to logic programs with negation, inparticular he provided new, more restrictive applicability conditions which guaranteethat the system preserves also the �nite failure set and the perfect model semantics ofstrati�ed programs. Since then serious research e�ort has been devoted to proving itscorrectness w.r.t. the various semantics available for normal programs. For instance,the new system was then adapted by Sato to full �rst order programs [88]. Relatedwork has been done by Maher [69], Gardner and Shepherdson [47], Aravidan andDung [12], Seki [92], Bossi and Cocco [18] and Bensaou and Guessarian [14].The replacement operationReplacement is possibly the most general transformation operation for logic programs.Syntactically, it consist in substituting a conjunction of literals ~C with another con-junction ~D in the body of a clause. Clearly, for the syntactic point of view, thisoperation is able to imitate most of the other transformation operation. To startwith, it can imitate the folding operation. On the other hand, being so general, if wewant it to be also somehow correct, we have to restrict its use by suitable applicabilityconditions. These applicability conditions may vary according to the semantic proper-ties that we are interested in preserving along the transformation. In the �eld of logicprograms, the replacement operation has been studied for the �rst time in the contextof de�nite programs by Tamaki and Sato in [96]. Later, developments were providedby the works of Sato himself [88], Gardner and Shepherdson [47], Bossi, Cocco andEtalle [20], Proietti and Pettorossi [79, 80] Maher [67, 69] Cook and Gallagher [32]and Bensaou and Guessarian [14]. For the technical details of each of these approachwe refer to In section 7.5.*********************************** and after that it has been rather neg-lected by people working on program transformations apart from Sato himself [88],Maher [67] and Gardner and Shepherdson [47]. Replacement consists in substituting

7a conjunction of literals, in the body of a clause, with another conjunction. It is avery general transformation able to mimic many other operations, such as thinning,fattening [18] and folding.Some applicability conditions are necessary in order to ensure the preservation ofthe semantics through the transformation. Such conditions depend on the semanticswe associate to the program. In the literature we �nd di�erent proposal. In [96]de�nite programs are considered; the applicability condition requires the replacedatom C and the replacing atom D to be logically equivalent in P and that the sizeof the smallest proof tree for C is greater or equal to the size of the smallest prooftree for D. Gardner and Shepherdson, in [47], give di�erent conditions for preservingprocedural (SLDNF) semantics and the declarative one. Such conditions are basedon Clark's (two valued) completion of the program. Also Maher, in [67, 69], stud-ies replacement wrt Success set, Finite Failure Set, Ground Finite Failure Set andPerfect Model semantics. Sato, in [88], considers also replacement of formulas whoseequivalence can be proved in �rst order logic and does not depend on the program.Bossi et al. have studied the correctness of this operation wrt the S-semantics forde�nite programs [20], and the Well-Founded semantics for normal programs [38].Origin of the chaptersChapter 2 and 4 will appear in A. Bossi, N. Cocco, and S. Etalle. Simultaneousreplacement in normal programs. Journal of Logic and Computation, 1995. A pre-liminary version appeared in Transforming Normal Programs by Replacement. InA. Pettorossi, editor, Meta Programming in Logic - Proceedings META'92, volume649 of Lecture Notes in Computer Science, pages 265{279. Springer-Verlag, Berlin,1992. Chapter 3 appears in A. Bossi and S. Etalle. Transforming Acyclic Programs.ACM Transactions on Programming Languages and Systems, Vol 16, n. 4, July1994, pages 1081-1096. Chapter 5 appears in A. Bossi and S. Etalle. More on Un-fold/Fold Transformations of Normal Programs: Preservation of Fitting's Semantics.In F. Turini, editor, Proc. Fourth International Workshop on Meta Programming inLogic. Springer-Verlag, Berlin, 1994. An extended abstract of chapter 6 appears inS. Etalle and M. Gabbrielli. Modular Transformations of CLP Programs. In L. Ster-ling, editor, Proc. Twelfth Int'l Conf. on Logic Programming, 1995. An extendedabstract of chapter 7 appears in S. Etalle and M. Gabbrielli. The Replacement Op-eration for CLP Modules. In N. Jones, editor, Proc. ACM SIGPLAN Symposium onPartial Evaluation and Semantics-Based Program Manipulation (PEPM '95), 1995.Chapter 8 appears in S. Etalle. More (on) Uni�cation-Free Prolog Programs. CWITechnical Report CS-R9454, September 1994, Amsterdam.

Chapter 2The semantics of normal logic programs
In this chapter, we de�ne the notation and we give the de�nitions of the basic declarat-ive semantics for normal programs, that is, programs which may employ the negationoperations in the bodies of the clauses. In particular we'll introduce Kunen's, andFitting's semantics. We'll also provide a new result, which characterizes program'sequivalence wrt Kunen's semantics.2.1 PreliminariesWe assume that the reader is familiar with the basic concepts of logic programming;throughout the chapter we use the standard terminology of [65] and [3]. We considernormal programs, that is �nite collections of normal rules, A L1; : : : ; Lm. whereA is an atom and L1; : : : ; Lm are literals. Symbols with a � on top denote tuples ofobjects, for instance ~x denotes a tuple of variables x1; : : : ; xn, and ~x = ~y stands forx1 = y1 ^ : : : ^ xn = yn. We also adopt the usual logic programming notation thatuses \," instead of ^, hence a conjunction of literals L1 ^ : : :^Ln will be denoted byL1; : : : ; Ln or by ~L.In this chapter (and every time we'll deal with normal programs) we'll alwayswork with three valued logic: the truth values are then true, false and unde�ned.We adopt the truth tables of [59], which can be summarized as follows: the usuallogical connectives have value true (or false) when they have that value in ordinarytwo valued logic for all possible replacements of unde�ned by true or false, otherwisethey have the value unde�ned.Three valued logic allows us to de�ne connectives that do not exist in two valuedlogic. In particular in the sequel we use the symbol , corresponding to Lukasiewicz'soperator of "having the same truth value": a, b is true if a and b are both true,both false or both unde�ned; in any other case a, b is false. As opposed to it, theusual $ is unde�ned when one of its arguments is unde�ned.In some cases we restrict our attention to formulas which we consider \well-behaving" in the three valued semantics. Next de�nition is intended for characterizingsuch formulas. 9

10 Chapter 2. The semantics of normal logic programsDe�nition 2.1.1� A logic connective 3 is allowed i� the following property holds: when a3b istrue or false then its truth value does not change if the interpretation of one ofits argument is changed from unde�ned to true or false.� A �rst order formula is allowed i� it contains only allowed connectives. 2Note that any formula containing the connective , is not allowed, while formulasbuilt with the usual logic connectives are allowed.Allowed formulas can be seen as monotonic functions over the lattice on the setfunde�ned ; true; falseg which has unde�ned as bottom element and true and false arenot comparable.Completion for Normal ProgramsIn this chapter we consider as semantics for a normal logic program P the set of alllogical consequences of its completion Comp(P), [28]; the problem of the consistencyof Comp(P) is here avoided by using three valued logic instead of the classical twovalued.The usual Clark's completion de�nition is extended to three valued logic by re-placing $, in the completed de�nitions of the predicates, with , . This savesComp(P) from the inconsistencies that it can have in two valued logic. For examplethe program P = fp :p:g has Comp(P) = fp,:pg which has a model with punde�ned.De�nition 2.1.2 Let P be a program and p(~t1) ~B1; : : : ; p(~tr) ~Br be all theclauses which de�ne predicate symbol p in P . The completed de�nition of p is� p(~x), Wri=1 9 ~yi (~x = ~ti) ^ ~Bi:where ~x are new variables and ~yi are the variables in p(~ti) ~Bi. If P contains noclause de�ning p, then the completed de�nition of p is� p(~x), false: 2The completed de�nition of a predicate is a �rst order formula that contains theequality symbol; hence, in order to interpret \=" correctly, we also need an equalitytheory. First recall that a language L is determined by a set of function and predicatesymbols of �xed arities. Constants are treated as 0-ary function symbols.De�nition 2.1.3 CETL, Clark's Equality Theory for the language L, consists of theaxioms:� f(x1; : : : ; xn) 6= g(y1; : : : ; ym) for all distinct f , g in L;� f(x1; : : : ; xn) = f(y1; : : : ; yn) ! (x1 = y1) ^ : : : ^ (xn = yn) for all f in L;� x 6= t(x) for all terms t(x) distinct from x in which x occurs;together with the usual equality axioms, that are needed in order to interpretcorrectly \=" , which are reexivity, symmetry, transitivity, and (~x = ~y) ! (f(~x) =f(~y)) for all functions and predicate symbols f in L. 2

2.1. Preliminaries 11Note that \=" is always interpreted as two valued, since an expression of the formt = s, with t; s ground terms cannot be unde�ned.De�nition 2.1.4 The Clark's completion of P wrt the language L, CompL(P) con-sists in the conjunction of the completed de�nition of all the predicates in P togetherwith CETL. 2The Language ProblemThe semantics determined by Comp(P) depends on the underlying language L, andwhen L is �nite (that is, when it contains only a �nite number of functions symbols)the equality theory which is incorporated in Comp(P) is not complete. This problemcan be solved by adding to Comp(P) some domain closure axioms which are intendedto restrict the interpretation of the quanti�cation to L-terms. The situation is furthercomplicated by the fact that in the literature we �nd two di�erent kind of such axioms:the strong (DCA) and the weak (WDCA) ones. In total there exist three di�erent\main" approaches, namely we may:a) Consider an in�nite language, with no domain closure axioms. This is theapproach followed by Kunen [61].b) Consider a �nite language and adopt the weak domain closure axioms (WDCA).This has been studied by Shepherdson [93], and the results are similar to the onesfound for the case of an in�nite language (case (a) above).c) Consider a �nite language and adopt the strong domain closure axioms (DCA).This was studied by Fitting in the case that L coincides with the language of theprogram L(P); this semantics is commonly known as Fitting's Model semantics. Hisresults can also be applied in the case in which L is larger than L(P).In this chapter we consider the three cases separately: �rst we analyze the casein which the language is in�nite, then in Section 4.3 we discuss how the results haveto be modi�ed when we drop the in�niteness assumption.Fitting's operatorFitting's operator can be considered the three-valued counterpart of the usual (two-valued) immediate consequence operator TP , and it is extremely useful for character-izing the semantics we are going to refer to in the sequel. We begin with the followingDe�nition.De�nition 2.1.5 Let L be a language. A three valued (or partial) L-interpretation,I, is a mapping from the ground atoms of L into the set ftrue, false, unde�nedg. 2A partial interpretation I is represented by an ordered couple, (T;F), of dis-joint sets of ground atoms. The atoms in T (resp. F) are considered to be true(resp. false) in I. T is the positive part of I and is denoted by I+; equivalentlyF is denoted by I�. Atoms which do not appear in either set are considered tobe unde�ned. If I and J are two partial L-interpretations, then I \ J is the threevalued L-interpretation given by (I+ \ J+; I� \ J�), I [J is the three valued L-interpretation given by (I+ [J+; I� [J�) and we say that I � J i� I = I \ J , that

12 Chapter 2. The semantics of normal logic programsis i� I+ � J+ and I� � J�. The underlying universe of an L-interpretation is theuniverse of L-terms, consequently when we say that a �rst order formula � is true inI, I j= �, we mean that the quanti�ers of � are ranging over the Herbrand Universeof L.We now give a de�nition of Fitting's operator [41]. In the sequel of the chapterwe write 9 y B� as a shorthand for (9 y B)�, that is, unless explicitly stated, thequanti�cation applies always before the substitution. We denote by V ar(E) the setof all the variables in an expression E and by L(P) the (�nite) language consistingof the functions and predicate symbols actually occurring in the program P .De�nition 2.1.6 Let P be a normal program, L a language that contains L(P), andI a three valued L-interpretation. �P (I) is the three valued L-interpretation de�nedas follows:� A ground atom A is true in �P (I), (A 2 �P (I)+)i� there exists a clause c : B ~L: in P whose head uni�es with A, � =mgu(A;B), and 9 ~w ~L� is true in Iwhere ~w is the set of local variables of c, ~w = V ar(~L)nV ar(B).� A ground atom A is false in �P (I), (A 2 �P (I)�)i� for all clauses c : B ~L in P for which there exists � = mgu(A;B) we havethat 9 ~w ~L� is false in Iwhere ~w is the set of local variables of c, ~w = V ar(~L)nV ar(B). 2Note that �P depends on the language L. It would actually be more appropriateto write �LP instead of �P , but then the notation would become more cumbersome.We adopt the standard notation:� �"0P (I) = I;� �"�+1P (I) = �P (�"�P (I));� �"�P (I) = [�<��"�P (I), when � is a limit ordinal.When the argument is omitted, we assume it to be the empty interpretation (;; ;):��P = �"�P (;; ;).�P is a monotonic operator, that is I � J implies �P (I) � �P (J); it follows thatthe Kleene's sequence �"0P , �"1P , : : :, �"kP , : : :, �"!P , : : : is monotonically increasing andit converges to the least �xpoint of �P . Hence there always exists an ordinal � suchthat lfp(�P) = �"�P . Since �P is monotone but not continuous, � could be greaterthan !.The �P operator characterizes the three valued model semantics of CompL(P),in fact Fitting in [41] shows that the three-valued Herbrand models of CompL(P)are exactly the �xpoints of �P ; it follows that any program has a least (wrt. �)three-valued Herbrand model, which coincides with the least �xed point of �P . Thismodel is usually referred to as Fitting's model.Example 2.1.7 Let P be the following program:P = f n(0):n(s(X)) n(X):q :n(X): g

2.2. Kunen's semantics 13And let L = L(P). We have that�"0P = (;; ;):�"1P = (fn(0)g; ;):�"2P = (fn(0); n(s(0))g; ;):: : :�"!P = (fn(0); : : : ; n(sk(0)); : : :g; ;):lfp(�P) = �"!+1P = (fn(0); : : : ; n(sk(0)); : : :g; fqg): 22.2 Kunen's semanticsIn this Section we will always refer to a �xed but unspeci�ed in�nite language L,that we assume contains all the function symbols of the programs we are considering.Here by in�nite language, we mean a language that contains in�nitely many functionssymbols (including those of arity 0). Later, in Section 2.3, we discuss the problemsthat arise when the language is �nite and we show how the results we give here haveto be modi�ed in order to be applied in this other context.Three valued program's completion semantics in the case of an in�nite languagehas been studied by Kunen [61] and successively by Shepherdson [93]. For this reason,following the literature, we refer to it as Kunen's semantics. The main result is thefollowing.Theorem 2.2.1 ([61]) Let P be a normal program and � an allowed formula.� CompL(P) j= � i� for some integer n; �"nP j= �Proof. This is basically Theorem 6.3 in [61], however, in [61] it is assumed thatthe language contains a countably in�nite number of symbols of each arity. Later,Shepherdson noticed that the result holds for any in�nite language [93, Theorem 5b].2 The aim of this Section is to de�ne and characterize program's equivalence, thiswill provide the theoretical background for the analysis of the correctness of the trans-formation. The result we prove here is partially a strengthening of [88, Proposition3.4] (however, in [88] the more general setting of �rst order programs under any basetheory is considered). We start with the following basic de�nition.De�nition 2.2.2 We say that P and P 0 are equivalent (wrt Kunen's semantics) i�for each allowed formula �� CompL(P) j= � i� CompL(P 0) j= �. 2Equivalence of two programs can be inferred by comparing the Kleene's sequencesof the �P operator. The following result has also been proved by Sato in [88] for themore general setting of �rst order programs under any base theory.

14 Chapter 2. The semantics of normal logic programsTheorem 2.2.3 Let P1 and P2 be two normal programs.If 8n 9m �"nP1 � �"mP2then for all �, CompL(P1) j= � implies CompL(P2) j= �where � ranges over the set of allowed formulas and n and m are quanti�ed overnatural numbers.Proof. Let us assume 8n 9m �"nP1 � �"mP2 , and let � be any allowed formula such thatCompL(P1) j= �. By Theorem 2.2.1, there exists an integer n such that �"nP1 j= �;by the hypothesis there exists an m such that �"nP1 � �"mP2 , hence �"mP2 j= �.Again, by Theorem 2.2.1, this implies that CompL(P2) j= �. 2Interestingly, also the inverse implication holds. The following is the main originalresult of this chapter. Since the proof is quite long, it is deferred to the Appendix.Theorem 2.2.4 Let P1 and P2 be two normal programs.If for all �, CompL(P1) j= � implies CompL(P2) j= �then 8n 9m �"nP1 � �"mP2where � ranges over the set of allowed formulas and n and m are quanti�ed overnatural numbers.These results allow us to characterize program's equivalence: Following Sato[88], we say that two programs P1, P2 are chain equivalent i� 8n 9m �"nP1 ��"mP2 and �"mP1 � �"nP2 . Using this notation, from the previous Theorems, weimmediately have the following.Corollary 2.2.5 Let P1 and P2 be normal programs, then� P1 and P2 are equivalent i� they are chain equivalent. 2Notice that, given two programs P1, P2, the fact that �"!P1 = �"!P2 is necessary butnot su�cient to ensure that P1 is equivalent to P2. This is due to the fact that theset of ground atomic logical consequences of CompL(P) (which coincide with �"!P) isnot su�cient to fully characterize Kunen's semantics of a program P . Consider forinstance the following two programs ([61]): P1 = fvoid(s(X)) void(X):g and P2 =fvoid(X) f:g where the predicate f has no clause de�ning it in either programs,and consequently it is always false. For any term t, the predicate void(t) is falsebefore �"!P1 , and indeed we have that �"!P1 = �"!P2 , however P1 is not equivalent to P2,in fact we have that CompL(P2) j= 8X:void(X) while CompL(P1) 6j= 8X:void(X).This is reected by the fact that �"2P2 j= 8X :void(X) while there is no integer nsuch that �"nP1 j= 8X :void(X). Indeed, P1 has a model which contains, besides the(representation of) natural numbers, also an in�nite chain of terms ti such that foreach i, void(ti) is true.

2.3. Adopting a (possibly) �nite language 152.3 Adopting a (possibly) �nite languageOur aim now is to analyze how the results given in the previous two Sections have tobe modi�ed when the language adopted is no longer in�nite (or at least not necessarilyin�nite). Therefore in the sequel we still refer to a �xed but unspeci�ed languageL, but we no longer assume it to be in�nite. As we mentioned in section 2.1 themain problem we have to face when adopting a �nite language is that CETL becomesan incomplete theory. The consequences of this are best shown by the followingExample, which is borrowed from [93]. Let P be the program:P = f p :q(X):q(a): gThe completed de�nition of P isp , 9X :q(X) ^ q(X) ,X = a:That is, CompL(P) j= p , 9X X 6= a. If L = fag then neither p nor :p is a logicalconsequence of CompL(P). The problem here is that neither we have a \witness"that allows us to say that 9X X 6= a holds, nor we can formally infer that sucha witness does not exists. The two main approaches used in logic programming inorder to obtain a complete theory out of CETL are the following:� adopting an in�nite language (that is a language with in�nitely many functionssymbols, and that consequently contains in�nitely many \witnesses");� adopting a �nite language together with some domain closure axioms, whichare axioms that commit us to a speci�c universe.For a extended discussion of the subject, we refer to [93].As we mentioned before, in the literature we �nd two di�erent kind of domainclosure axioms.De�nition 2.3.1 Let L be a �nite language.� The Domain Closure Axiom, DCAL, isx = t1 _ x = t2 _ : : :where t1; t2; : : : is the sequence of all the ground L-terms.� The Weak Domain Closure Axiom, WDCAL, is9 ~y1 (x = f1(~y1)) _ : : : _ 9 ~yr (x = fr(~yr)):where f1; : : : ; fr are all the function symbols in L and ~yi are tuples of variablesof the appropriate arity. 2Note that when L contains a function of arity greater than zero, DCAL is an in�nitedisjunction and hence it is not a �rst-order formula. For this reason, the notationCompL(P) [DCAL, that we are going to use often in the sequel is actually over-loaded, nevertheless we shall use it for uniformity with the rest of the chapter. Asopposed to DCAL, WDCAL is a �rst-order formula.

16 Chapter 2. The semantics of normal logic programsThe following simple example shows how the semantics of a program changesdepending on the kind of closure axioms adopted. Let P be the same program weused in Example 2.1.7.P = f n(0):n(s(X)) n(X):q :n(X): gand let L = L(P). The completion of P isn(x) , (x = 0) _ (9 y (x = s(y)) ^ n(y)) ^ q , 9 y :n(y)together with CETL. On one hand, when we use DCAL we haveCompL(P) [DCAL j= 8x n(x):In fact assuming DCAL is equivalent to restrict ourselves to L-Herbrand interpreta-tions and models, and the formula 8x n(x) is true in the unique Herbrand model ofP . From this it follows that:CompL(P) [DCAL j= :q:On the other hand, if we use WDCAL we haveCompL(P) [WDCAL 6j= 8x n(x):In fact WDCAL allows a model which contains, besides the natural numbers, also anin�nite chain of terms ti such that for each i, ti = s(ti+1). In such a model each n(ti)can be false. It follows that:CompL(P) [WDCAL 6j= :q:By assuming WDCAL we obtain a semantics which is stronger than the one adoptingDCAL. In fact DCAL j= WDCAL, and hence if CompL(P) [WDCAL j= �; thenalso CompL(P) [DCAL j= �.It is important to observe that when we adopt some domain closure axioms, wehave to modify in the obvious way, the De�nitions of programs equivalence (2.2.2).Let us now give another Example showing how program's equivalence may bea�ected by the choices of the language and of the closure axioms.Example 2.3.2 Consider the three programs:P1 = f n(0):n(s(X)) n(X): gP2 = f n(0):n(s(X)): gP3 = f n(X): g

2.3. Adopting a (possibly) �nite language 17Let L = L(P1).If we assume DCAL , for all three the programs we haveCompL(P) [DCAL j= 8x n(x); P 2 fP1; P2; P3g:Actually, all the programs are pairwise equivalent wrt this semantics.If we assume WDCAL, CompL(P1) [WDCAL 6j= 8x n(x);while for P 2 fP2; P3g CompL(P) [WDCAL j= 8x n(x); (2.1)then only P2 and P3 are equivalent wrt this semantics.Finally if we assume that L strictly contains L(P1), then P3 is the only program forwhich (2.1) holds. In this case no program is equivalent to any of the other ones, nomatter which are the axioms we adopt. 2This Example shows that two programs may be equivalent wrt CompL(P) [DCALand not equivalent wrt CompL(P) [WDCAL. But there are also cases in which theconverse of this statement is true. So even though the semantics obtained by assum-ing WDCAL is stronger than the one obtained by assuming DCAL, no program'sequivalence is stronger than the other one.2.3.1 The semantics given by CompL(P) [WDCALAs far as we are concerned the semantics given by CompL(P) [WDCAL (with Lpossibly �nite) behaves exactly as Kunen's semantics. This fact is due to the followingresult.Theorem 2.3.3 ([93]) Let P be a normal program, L a �nite language and � anallowed formula� CompL(P) [WDCAL j= � i� for some integer n; �"nP j= �. 2Here L is required to be �nite uniquely because otherwise WDCAL is not a �rst-orderformula. Notice that Theorem 2.3.3 is identical to Theorem 2.2.1, which was the onlyresult on the semantics that we used in Section 4.1. Consequently, the results that wecan prove on program's and formula's equivalence and on the replacement operationare identical to the ones given in the previous Section. In particular, Theorems 2.2.3and 2.2.4 and Corollary 2.2.5 hold also for CompL(P) [WDCAL.

18 Chapter 2. The semantics of normal logic programs2.3.2 Fitting's Model SemanticsWe now introduce the semantics given by CompL(P)L [DCAL. As opposed to whathappened in the previous Section, there is no point in requiring L to be a �nite lan-guage. Since DCAL is (usually) already a non �rst-order axiom, we have to leave the�rst-order context anyhow, and there is no reason here in restricting the domain. Aswe said before, adopting DCAL is equivalent to restricting our attention to Herbrandinterpretations and models (on the language L). This particular semantics enjoysa remarkable property: namely that there always exists a minimal Herbrand model(wrt �), this model is usually referred to as Fitting's model.De�nition 2.3.4 Let P be a program, Fitting's model of P , Fit(P), is the leastthree valued Herbrand model of Comp(P). 2In order to check if an allowed formula is a logical consequence of CompL(P) [DCALit is su�cient to check if it is true in Fit(P). Indeed, we have the following.Theorem 2.3.5 ([41]) Let P be a normal program and � an allowed formula� CompL(P) [DCAL j= � i� Fit(P) j= �. 2A remarkable property of Fit(P) is that it coincides with the interpretation given bythe least �xpoint of the operator �P , lfp(�P). Now, from the monotonicity of �P ,it follows that the Kleene's sequence f: : :�"�P ; : : :g is monotonically increasing andit converges to its least �xpoint. Hence there always exists an ordinal � such thatlfp(�P) = �"�P . Since �P is monotone but not continuous, � could be greater than!. Summarizing we have that.Theorem 2.3.6 ([41]) Let P be a normal program, then, for some ordinal �,� Fit(P) = lfp(�P) = �"�P 22.4 Appendix. Proof of Theorem 2.2.4We need a Lemma �rst.Lemma 2.4.1 Let P be a normal program and � an allowed formula with freevariables ~x. For each integer n, there exist two formulas in the language of equality,T n� and F n� , with free variables ~x such that, for any tuple ~t of ground terms,� T n� (~t=~x) is true in �"nP i� �(~t=~x) is;in any other case T n� (~t=~x) is false in �"nP .� F n� (~t=~x) is true in �"nP i� �(~t=~x) is false in �"nP .in any other case F n� (~t=~x) is false in �"nP .Proof. From Lemma 4.1 in [93] it follows that T n� (~t=~x) is true in �"nP i� �(~t=~x) is,and that F n� (~t=~x) is true in �"nP i� �(~t=~x) is false in �"nP . From the completeness ofCETL in the case that the underlying universe is the Herbrand universe, we have thatwhen T n� (~t=~x) (resp. F n� (~t=~x)) is not true in �"nP , it has to be false in �"nP . 2

2.4. Appendix. Proof of Theorem 2.2.4 19Actually, this result holds for any choice of L. To give the intuitive idea of howsuch formulas are built, let us consider the simple case in which � = n(x), and P isthe programP = f n(0):n(s(x)) n(x) g:We have thatT 1n(x) � x = 0,T 2n(x) � x = 0 _ x = 1,: : :On the other hand,F 1n(x) � x 6= 0 ^ :9 y x = s(y),F 2n(x) � (x 6= 0 ^ :9 y x = s(y)) _ (9 y x = s(y) _ (y 6= 0 ^ :9 z y = s(z))), : : :We can now prove the result we were aiming at.Theorem 2.2.4 Let P1 and P2 be two normal programs.If for all �, CompL(P1) j= � implies CompL(P2) j= �then 8n 9m �"nP1 � �"mP2where � ranges over the set of allowed formulas and n and m are quanti�ed overnatural numbers.Proof.The proof is by contradiction. Assume that for all �, CompL(P1) j= � impliesCompL(P2) j= � and that there exists a �xed n such thatfor all m; �"nP1 6� �"mP2 : (2.2)For each predicate symbol p let T np(~x) and F np(~x) be the equality formulas described inLemma 2.4.1. Hence T np(~x)(~t=~x) is true in �"nP i� p(~t=~x) is, and F np(~x)(~t=~x) is true in�"nP i� p(~t=~x) is false in �"nP . Let also� � ^p2pred(P1)8 ~x (T np(~x)! p(~x) ^ F np(~x)!:p(~x))where p ranges over the �nite set of predicate symbols occurring in P1. From Lemma2.4.1 it follows that �"nP1 j= �, and, by Theorem 2.2.1CompL(P1) j= �:By hypothesis we have that CompL(P2) j= �, and, by Theorem 2.2.1 there exists aninteger r such that �"rP2 j= �:

20 Chapter 2. The semantics of normal logic programsBy (2.2) �"nP1 6� �"rP2 , hence there exists a ground atom q(~t) such thateither �"nP1 j= q(~t) and �"rP2 6j= q(~t) or �"nP1 j= :q(~t) and �"rP2 6j= :q(~t):We consider only the �rst possibility, the other case is perfectly symmetrical. So weassume that �"nP1 j= q(~t) and �"rP2 6j= q(~t) (2.3)By the left hand side of 2.3 and the de�nition of T nq(~x) in Lemma 2.4.1,�"nP1 j= T nq(~x)(~t=~x):T nq(~x)(~t=~x) is a formula of the equality language and contains no predicate symbolsother than \=", so if it is true in �"nP1 it must be true also in �"0P1 , i.e. �"0P1 j= T nq(~x)(~t=~x).But �"0P1 = (;; ;) � �"rP2 , hence �"rP2 j= T nq(~x)(~t=~x):Since �"rP2 j= �, from the de�nition of �, it follows that also �"rP2 j= 8 ~x (T nq(~x)(~x)! q(~x)),hence �"rP2 j= T nq(~x)(~t=~x)! q(~t); and, from the above statement,�"rP2 j= q(~t)which contradicts the right hand side of (2.3). 2

Chapter 3 Transforming Acyclic Programs
1 An Unfold/Fold transformation system is a source-to-source rewriting methodo-logy devised to improve the e�ciency of a program. Any such transformation shouldpreserve the main properties of the initial program: among them, termination. Inthe �eld of logic programming, the class of acyclic programs plays an important rolein this respect, as it is closely related to the one of terminating programs. The twoclasses coincide when negation is not allowed in the bodies of the clauses.In this chapter it is proven that the Unfold/Fold transformation system de�nedby Tamaki and Sato preserves the acyclicity of the initial program. As corollaries,it follows that when the transformation is applied to an acyclic program, then �nitefailure set for de�nite programs is preserved; in the case of normal programs, allmajor declarative and operational semantics are preserved as well. These resultscannot be extended to the class of left terminating programs without modifying thede�nition of the transformation.3.1 IntroductionMotivationIn this chapter we focus on the unfold/fold transformation system proposed by Ta-maki and Sato [96].As the large literature shows [96, 58, 90, 91, 92, 12], a lot of research has beendevoted to proving the correctness of the system wrt the various semantics proposedfor logic programs. However the question of the consequences of the transformationon the (universal) termination of the program has not yet been tackled.Recall that a program is called terminating if all its SLDNF derivations startingin a ground goal are �nite.Here we follow the approach to termination of Apt and Bezem [5]. They investigatethe class of acyclic programs (introduced by Cavedon [26]) and prove that it is closelyrelated to the one of terminating programs. In fact we have that every acyclic program21

22 Chapter 3. Transforming Acyclic Programsis terminating [5] and that every de�nite, terminating program is acyclic [15]; however,when negation is allowed in the bodies of the clauses, there are programs which areterminating but not acyclic. This is caused either by the presence of ounderingderivations or by the fact that since nonground negative literals might not be selected,some in�nite branches of the search tree cannot be explored, see [5] for examples.In this chapter we prove that when the initial program of an unfold/fold trans-formation sequence is acyclic, then the resulting program is acyclic as well.This has some obvious consequences on the preservation of termination and somesemantic repercussions. For de�nite programs, the transformation preserves the Fi-nite Failure Set. In fact, since acyclic programs are terminating, and since de�niteprograms cannot ounder, their Finite Failure Set coincides with the complement oftheir Success Set. For programs with negation, the transformation preserves all themajor formalisms, namely Fitting's model, 2 and 3 valued ground logical consequenceof the completion, and, in the non-oundering cases, the operational semantics basedon the SLDNF-resolution: when the program is acyclic they all coincide and thusthey are preserved by the transformation.Structure of the chapterSection 3.3 contains the preliminaries on terminating and acyclic programs and onthe Tamaki-Sato's unfold/fold transformation system. In section 3.4 we prove thatthe transformation preserves the acyclicity of the initial program; we also discuss thecase in which the initial program is left terminating. In Section 3.5 we give a briefsummary of the semantic properties of acyclic programs and we show that they arepreserved through the transformation.3.2 Unfold/Fold Transformation SystemsWe now give the formal de�nitions of the two unfold/fold transformation systems thatwe are going to refer to in the rest of the thesis. We start with the method proposedby Tamaki and Sato [96] for de�nite programs and then used by Seki [90, 92] fornormal programs. Here we present it as it is in [92]. Later in this section we'll alsoreport the more restrictive modi�ed folding operation introduced by Seki [91] whichguarantees the correctness of the operation also wrt the �nitefailure set.OCHO We start with the requirements on the initial program. All de�nitions are givenmodulo reordering of the bodies of the clauses, and standardization apart is alwaysassumed.De�nition 3.2.1 (initial program) We call a normal program P0 an initial pro-gram if the following two conditions are satis�ed:(I1) P0 is divided into two disjoint sets P0 = Pnew [Pold;(I2) All the predicates which are de�ned in Pnew occur neither in Pold nor in thebodies of the clauses in Pnew . 2

3.2. Unfold/Fold Transformation Systems 23The predicates de�ned in Pnew are called new predicates, while those de�ned inPold are the old predicates. For the porpose of this chapter, clauses in Pnew will alsobe referred to as de�ning clauses.Example 3.2.2 [92] Let P0 be the following programP0 = DB [f c1 : path(X; [X]) node(X):c2 : path(X; [XjXs]) arc(X;Y); path(Y;Xs):c3 : goodlist([]):c4 : goodlist([XjXs]) :bad(X); goodlist(Xs):c5 : goodpath(X;Xs) path(X;Xs); goodlist(Xs): gwhere predicates node, arc and bad are de�ned in DB by a set of unit clauses.Predicate goodpath(X;Xs) can be employed for �nding a path Xs starting fromthe node X which doesn't contain \bad" nodes. Let Pold = fc1; : : : ; c4g [DB andPnew = fc5g, thus goodpath is the only new predicate. 2Unfolding is the fundamental operation for partial evaluation [66] and consists inapplying a resolution step to the considered atom in all possible ways.De�nition 3.2.3 (Unfolding) Let cl : A H; ~K: be a clause of a normal programP , where H is an atom. Let fH1 ~B1; : : : ;Hn ~Bng be the set of clauses of Pwhose heads unify with H, by mgu's f�1; : : : ; �ng.� Unfolding H in cl consists of substituting cl with fcl01; : : : ; cl0ng, where, for eachi, cl0i = (A ~Bi; ~K)�i.unfold (P; cl;H) def= Pnfclg [fcl01; : : : ; cl0ng. 2Example 3.2.2 (part 2) By unfolding the atom path(X;Xs) in the body of c5, weobtainc6 : goodpath(X; [X]) node(X); goodlist([X]):c7 : goodpath(X; [XjXs]) arc(X;Y); path(Y;Xs); goodlist([XjXs]):Both clauses can be further unfolded (c6 twice), the resulting clauses arec8 : goodpath(X; [X]) node(X);:bad(X):c9 : goodpath(X; [XjXs]) arc(X;Y); path(Y;Xs);:bad(X); goodlist(Xs):Let P1 = fc1; : : : ; c4; c8; c9g [DB. 2Folding is the inverse of unfolding when one single unfolding is possible. It consistsin substituting an atom A for an equivalent conjunction of literals ~K in the body ofa clause c. This operation is used in all the transformation systems in order to packback unfolded clauses and to detect implicit recursive de�nitions. In the literaturewe �nd di�erent de�nitions for this operation. This is due to the fact that it doesnot always preserve the declarative semantics and thus its use must be restrictedby some applicability conditions. Depending on the approach, such conditions canbe either a constraint on how to sequentialize the operations while transforming the

24 Chapter 3. Transforming Acyclic Programsprogram [96, 58], or can be expressed in terms of semantic properties of the program,independently from its transformation history [18, 67].In the method proposed by Tamaki and Sato [96], the transformation sequenceand the folding operation are de�ned in terms of each other.De�nition 3.2.4 (transformation sequence) A transformation sequence is a se-quence of programs P0; : : : ; Pn, n � 0, such that each program Pi+1, 0 � i < n, isobtained from Pi by unfolding or folding a clause of Pi. 2De�nition 3.2.5 (folding) Let P0; : : : ; Pi, i � 0, be a transformation sequence,c : A ~K 0; ~J. a clause in Pi and d : D ~K . a clause in Pnew . Let X = V ar(d) bethe set of all the variables occurring in the clause d, and Y = V ar(~K 0)nV ar(A; ~J) bethe set of variables in ~K 0 not in A; ~J. If there exists a substitution � whose domainis the set X, such that the following conditions hold:(F1) ~K� = ~K 0;(F2) � renames with variables in Y the variables in ~K not in D;(F3) d is the only clause in Pnew whose head is uni�able with D� ;(F4) one of the following two conditions holds1. the predicate in A is an old predicate;2. c is the result of at least one unfolding in the sequence P0; : : : ; Pi;then folding D� in c in Pi consists of substituting c0 for c in Pi, wherehead(c0) def= Abody(c0) def= D�; ~J .fold(Pi;D�; c) def= (Pinfcg) [fc0g: 2Example 3.2.2 (part 3)We can now fold the body of c9, using c5 as folding clause,the resulting program is P2 = DB [fc1; : : : ; c4; c10g, where c10 is the following clause:c10 : goodpath(X; [XjXs]) arc(X;Y);:bad(X); goodpath(Y;Xs):Notice that because this operation the de�nition of goodpath is now recursive. 2The transformation enjoys the following important properties.Theorem 3.2.6 Let P0; : : : ; Pn be a transformation sequence.� If P0 is a de�nite program then{ [96] The least Herbrand models of the initial and �nal programs coincide.{ [58] The computed answers substitution semantics of the initial and �nalprograms coincide.� If P0 is a normal program, then{ [90] The Stable models of the initial and �nal programs coincide.{ [92] The Well-Founded models of the initial and �nal programs coincide.{ [89] Under a further mild assumption on the initial program; if the initialprogram is strati�ed then the �nal program is strati�ed and their Perfectmodels coincide.

3.3. Termination 25{ [12] The semantic kernels of the initial and �nal program coincide; thisimplies also that the Stable model semantics, the preferred extension se-mantics, the stationary semantics and the stable theory semantics of theinitial and the �nal programs coincide. 2Modi�ed foldingWe have to mention that the above transformation does not preserve the Finite Failureset of the initial (de�nite) program. More precisely we have that the Finite Failureset of the �nal program is contained in the one of the initial program, but, in general,not vice-versa. This is shown by the following example.Example 3.2.7 Let P0 be the following program:P0 = f c1 : p q; h(X):c2 : h(s(X)) h(X): gHere we use the following partition: Pnew = fc1g, Pold = fc2g; notice that there is node�nition for predicate q, so the queries P [f qg and P [f pg will always fail.Now if we unfold atom h(X) in the body of the �rst clause, we obtain a renaming ofthe clause itself, namely:P1 = fc2g [fc3 : p q; h(Y):gc3 satis�es condition (F4.2), so it can be folded, using c1 as folding clause. Theresulting program is:P2 = fc2g [fc4 : p p:gNow the query P2 [f pg does not terminate. 2The problem of the correctness of the operation wrt the Finite Failure Set waspointed out by Seki, who modi�ed the applicability conditions of the folding operationas follows.De�nition 3.2.8 (modi�ed folding) [91]Themodi�ed folding operation is de�nedexactly as in De�nition 3.2.5, with the exception of condition (F4.2), which is replacedby the following(F4.2') all the atoms in ~K 0 are the result of some previous unfold operation. 2This De�nition �rst appeared in [89]. It is easy to see that when (F4.2') holds,then (F4.2) holds as well, hence that the modi�ed folding operation enjoys all theproperties that were proven for the folding operation. Seki proved that modi�edfolding preserves the Finite Failure set of a de�nite program [89, 91]; later on Sato,on a work that extends this de�nition to full �rst order programs [87], proved thecorrectness of the system wrt Kunen's semantics.3.3 TerminationThe following notion is crucial.

26 Chapter 3. Transforming Acyclic ProgramsDe�nition 3.3.1 A program is called terminating i� all its SLDNF-derivationsstarting from a ground goal are �nite. 2Hence terminating programs are the ones whose SLDNF-trees starting in a groundgoal are �nite. We now present the approach to the issue of termination followed byApt and Bezem [5].Acyclic programsAcyclic programs form a natural subclass of the locally strati�ed ones; they wereintroduced by Cavedon [26] and have been further studied by Apt and Bezem [5]. Togive their de�nition, �rst we need the following notion.De�nition 3.3.2 Let P be a program, a level mapping for P is a function j j :BP !N from ground atoms to natural numbers. 2For an atom A, jAj denotes the level of A. Following [5], we extend this de�nition toground literals by letting j:Aj = jAj.De�nition 3.3.3 Let j j be a level mapping.� A clause is acyclic wrt j j i� for every ground instance A L1; : : : ; Lk of it,and for each i, jAj > jLij;� A program P is acyclic wrt j j i� all its clauses are. P is called acyclic if it isacyclic wrt some level mapping. 2Following Bezem [15], we introduce the concept of boundedness, which applies alsoto nonground atoms.De�nition 3.3.4 Let j j be a level mapping. A literal L is called bounded wrt j j ifj j is bounded on the set [L] of ground instances of L. A goal is called bounded wrtj j i� all its literals are. 2Example 3.3.5 [8] Consider the program member.P = f member(X; [Y jXs]) member(X;Xs):member(X; [XjXs]): gWe adopt the standard list notation and de�ne the function j jl, called listsize whichassigns natural numbers to ground terms as follows:jtjl = 1 if t is not of the form [x1jxs] (this takes also care of the case t = []).j[x1jxs]jl = 1 + jxsjl.We can now de�ne the level mapping j j for the member program: jmember(t; s)j =jsjl. It is easy to see that program member is acyclic wrt j j and that if l is a list (bythis we mean l = [x1; : : : ; xn], where the xi's need not be ground), then member(t; l)is a bounded atom. 2We can now relate acyclic and terminating programs.Theorem 3.3.6 [5] Let P be a program and G be a goal. If there exists a levelmapping j j such that P is acyclic wrt j j and G is bounded wrt j j then all SLDNFderivations of P [fGg are �nite. 2

3.4. Transforming Acyclic Programs 27Since ground goals are bounded, this implies the following.Theorem 3.3.7 [5] If P is an acyclic program then P is terminating. 2In [5] is stated that the converse of Theorem 3.3.7 holds in the case that no SLDNF-derivation starting in a ground goal contains a goal with a nonground negative literalin it, and that since that condition is quite constraining, the result itself is too weakto be formalized. However it is signi�cant at least for the case that we restrict ourattention to de�nite programs; in fact in [15] we �nd the following.Theorem 3.3.8 [15] Let P be a de�nite program, then P is terminating i� P isacyclic. 2From the procedural point of view, acyclic programs enjoy the following importantproperty: the two most prominent approaches, namely the SLDNF resolution (seeLloyd [65] and Apt [3]) and the SLS resolution from Przymusinski [82], coincide whenapplied to acyclic programs. For the semantic properties of acyclic programs we referto section 3.5.3.4 Transforming Acyclic ProgramsWe now show that if the initial program of a transformation sequence is acyclic thenthe resulting program is acyclic as well. We do this by showing that there exists alevel mapping with respect to which every program in the transformation sequenceis acyclic.NotationLet P0; : : : ; Pn be the transformation sequence we are considering. Since P0 is acyclic,then it is acyclic wrt some level mapping, say jj jj, moreover, there in no loss ofgenerality in assuming that jj jj does not take value zero on any atom. Let nf be thenumber of foldings that are going to be performed in the sequence (which we assumegreater than zero), and let maxbody be the maximum number of literals that a bodyof a clause of P0 contains, augmented by one. We also suppose that maxbody> 1, asit is not possible to perform any unfold or fold operations on a program consistingsolely of unit clauses.We now de�ne a new level mapping j j for P0.De�nition 3.4.1 Let P0 be acyclic wrt the level mapping jj jj. The level mappingj j is de�ned as follows. Let A be a ground atom.� If A is an old atom then we let jAj = nf �maxbodyjjAjj.� If A is an new atom then we distinguish two subcases:(a) If A uni�es with the head of only one clause of Pnew , N B1; : : : ; Bn,suppose that A = N�, since B1; : : : ; Bn are old atoms, we have that j j isalready de�ned on their ground instances, so we setjAj = jN�j = supfPni=1 jBi�j j Dom() = V ar(B1�; : : : ; Bn�)g+ 1.

28 Chapter 3. Transforming Acyclic Programs(b) (This case is of no relevance for the proof, as, because of condition (F3),we are interested in computing the level mapping of atoms that unify withthe head of only one clause of Pnew; but we do have to extend j j in aconsistent way). If A uni�es with the head of a (non-unit) set of clausesfN1 B1;1; : : : ; B1;n(1) : : : Nj Bj;1; : : : ; Bj;n(j)g � Pnew, suppose thatA = Ni�i, we de�nejAj = supfPn(i)k=1 jBi;k�ijg+ 1where i ranges in [1; : : : ; j] and ranges over the ground substitutionswhose domain is V ar(Bi;1�i; : : : ; Bi;n(i)�i) 2Here the sup of an empty set is assumed to be 0. j j is obviously a level mapping,as it is de�ned and �nite on each ground atom.In order to prove that each of the programs in the transformation sequence isacyclic wrt j j we need the following simple but technical lemma.Lemma 3.4.2 For nonzero integers nf; n; n1; : : : ; nk, if 1 < k <maxbody then� if n > supfn1; : : : ; nkg, then nf �maxbodyn > nf +Pkj=1 nf �maxbodynjProof.nf +Pkj=1 nf �maxbodynj � nf + nf � k �maxbodysupfnjgSince k <maxbody� nf + nf � (maxbody� 1) �maxbodysupfnjg= nf + nf �maxbodysupfnjg+1 � nf �maxbodysupfnjgSince maxbody> 0 and n > supfnjg;� nf �maxbodyn + nf � nf �maxbodysupfnjg= nf �maxbodyn + nf � (1 �maxbodysupfnjg).Since all integers are nonzero and maxbody > 1, 1�maxbodysupfnjg < 0. This provesthe Lemma. 2Lemma 3.4.3 For each Pi in the transformation sequence the level mapping j j ofDe�nition 3.4.1 satis�es the following.(a) for each ground instance of a de�ning clause H B1; : : : ; Bk:,jHj > jB1j+ : : :+ jBkj;(b) for any other clause H B1; : : : ; Bk: in Ground(Pi),jHj > jB1j+ : : :+ jBkj+ nfi.Where for each i, nfi is the number of folding operations that will be performedin the sequence from Pi to Pn.Proof. The proof proceeds by induction on the index i.Base Case: P0.Let c : H B1; : : : ; Bk: be a clause of Ground(P0). If k = 0 then the result holdstrivially. So we assume k > 0. We have to distinguish two cases:If H is a new predicate, then c is an instance of a de�ning clause, and condition(a) is then trivially satis�ed by the de�nition of j j.

3.4. Transforming Acyclic Programs 29IfH is an old predicate, then, since jjHjj > supfjjBjjjg and since 1 < k <maxbody,the result follows from Lemma 3.4.2.Induction Step: Pi+1.For those clauses that Pi and Pi+1 have in common, the result follows from theinductive hypothesis and the fact that nfi+1 � nfi. Hence we can focus on thoseclauses that were introduced or modi�ed in the last transformation step (from Pi toPi+1). We distinguish upon the operation that has been used for going from Pi toPi+1UnfoldingLetd : H B 0; L1; : : : ; Lh: be the unfolded clause, andc : B B1; : : : ; Bk: be one of the unfolding ones.Let also � = mgu(B;B 0), then the resulting clause isH� B1�; : : : ; Bk�; L1�; : : : ; Lh�:Since nfi+1 = nfi, in order to prove the thesis, we have to prove that, for each jH�j > jB1�j+ : : :+ jBk�j+ jL1�j+ : : :+ jLh�j+ nfi: (3.1)We have to distinguish two cases:First we suppose that d is a de�ning clause. Then B is an old predicate and clausec satis�es condition (b), hencejB�j > jB1�j+ : : :+ jBk�j+ nfi.On the other hand, clause d satis�es condition (a), hencejH�j > jB 0�j+ jL1�j+ : : :+ jLh�j.Since B 0� = B� this proves (3.1).Secondly we consider the case in which d is not a de�ning clause. Hence d satis�escondition (b), and we have thatjH�j > jB 0�j+ jL1�j+ : : :+ jLh�j+ nfi.Since clause c must satisfy either (a) or (b), we also have thatjB�j > jB1�j+ : : :+ jBk�j.Since B 0� = B� this proves again (3.1).FoldingSuppose that:c : H B 01; : : : ; B 0k; L1; : : : ; Lh: is the folded clause of Pi,d : N B1; : : : ; Bk is the folding clause of Pnew .Hence (B 01; : : : ; B 0k) = (B1; : : : ; Bk)� , and H N�;L1; : : : ; Lh: is the clause we addto Pi+1.By (F4), c is not a de�ning clause, hence its ground instances have to satisfycondition (b), that is, for each , jHj > jB 01j+ : : :+ jB 0kj+ jL1j : : :+ jLhj+nfi.Since (B 01; : : : ; B 0k) = (B1; : : : ; Bk)� , this implies that, for each ,jHj > jB1�j+ : : :+ jBk�j+ jL1j : : :+ jLhj+ nfi,where � is a renaming on the variables in ~w = V ar(B1; : : : ; Bk)nV ar(N). Let ~z = ~w� ,by the assumptions in (F2), V ar(H;L1; : : : ; Lh) \ ~z = ;. Hence we can split into

30 Chapter 3. Transforming Acyclic Programstwo independent orthogonal substitutions: = j~zj�~z, where j~z is restricted to ~z,and j�~z is restricted to the complement of ~z. And we have that, for each ,jHj�~zj > jB1�j�~zj~zj+ : : :+ jBk�j�~zj~zj+ jL1j�~zj+ : : :+ jLhj�~zj + nfi.Since this holds for any choice of j~z, for each jHj�~zj > supfPki=1 jBi�j�~z�j j Dom(�) = ~zg+ jL1j�~zj+ : : :+ jLhj�~zj+ nfi.Now by (F3) d is the only clause whose head uni�es with N� ; it follows that, by thede�nition of j j, jN�j�~zj = supfPki=1 jBi��jg+ 1, hence we have that, for each ,jHj�~zj > jN�j�~zj+ jL1j�~zj+ : : :+ jLhj�~zj+ nfi � 1.Now the variables of ~z do not occur in any atom of this clause we have that, for each jHj > jN�j+ jL1j+ : : :+ jLhj+ nfi � 1Since this is a folding step, nfi+1 < nfi and hence we have that (b) is satis�ed in Pi+1.2 This implies immediately the desired conclusionCorollary 3.4.4 Let P0; : : : ; Pn be a transformation sequence, then(a) if P0 is acyclic then Pn is.In the case that P0 is a de�nite program, this can be restated as follows(b) if P0 is de�nite and terminating, then Pn is.Proof. It follows at once from Lemma 3.4.3 2Transforming left-terminating programsOne would like Corollary 3.4.4b to hold also in the case of left terminating programs,which are those programs whose LDNF (SLDNF with leftmost selection rule) de-rivations starting in a ground goal are �nite. Left terminating programs form animportant superclass of the terminating programs and, as pointed out by Apt andPedreschi [8], there are natural left terminating programs that are not terminating.However, left-termination is not preserved by the transformation system. In fact, ifwe consider the three programs P0, P1, P2 of Example 3.2.7, we have that P0 and P1are left terminating, while P2 is not.In general left termination is not preserved even when Seki's (more restrictive)modi�ed folding operation is used. This is shown by the following example.Example 3.4.5 Let P0, be the following program:P0 = f c1 : d(X) h(X); q(X):c2 : p q(X); h(X):c3 : q(s(0)):c4 : h(s(X)) h(X): gWhere we adopt the following partition: Pnew = fc1g, Pold = fc2; c3; c4g. It is easy toverify that the program is left-terminating. Since the head of c2 is an old predicate(and then (F4.1) is satis�ed), we can fold q(X); h(X) in the body of c2. the resultingprogram is

3.4. Transforming Acyclic Programs 31P1 = fc1; c3; c4g [fc5 : p d(X)gNow the goal P1 [f pg originates an in�nite LDNF-derivation. 2In this case the problem is due to the fact that the de�nition of transformationsequence is given modulo reordering of the bodies of the clauses, and the operationof reordering itself does not preserve left-termination.It can be argued that then what we have to do is to start by adopting the modi�edfolding instead of the one of Tamaki-Sato and by restating the de�nition of unfoldingand folding so that the order of the literals in the bodies of the clauses is taken intoaccount. That is indeed a possible approach, however a fold operation so de�nedwould be of far more limited applicability than the present one; this holds not onlybecause the modi�ed folding is more restrictive than the ordinary one, but mainlybecause we would have to require that the literals that are going to be folded are allfound next to each other in the exact same sequence as in the body of the foldingclause. This is often not the case, in particular when the folded clause is the result ofsome previous unfold operation; notice that this is what happens in Example 3.2.2.Nevertheless, we can relax the requirement of the acyclicity of the initial program,by exploiting the result in a modular way. First we need the following de�nition.De�nition 3.4.6 Let P0; : : : ; Pn be a transformation sequence and let P0 = Q0 [R.We say that the transformation is performed within Q0 if there exist programsQ1; : : : ; Qn such that, for each i,� Pi = Qi [R;� No clause of R is used as folding or unfolding clause. 2Now we have to use the concept of acceptable programs, introduced by Apt andPedreschi in [8]. Here the notation becomes more cumbersome as the notion ofacceptability is bound both to a level mapping and to a (not necessarily Herbrand)model. For the de�nition we refer to [8]. Informally, acceptable are to left terminatingprograms what acyclic are to terminating ones, in fact in [8] is proven that, in cases ofnon-oundering programs, the classes of acceptable and of left terminating programscoincide.Corollary 3.4.4a can then be restated as follows.Proposition 3.4.7 Let P0; : : : ; Pn be a transformation sequence. Suppose that P0is acceptable wrt the level mapping j j and the model M . If there exists a programQ0 � P0 such that Q0 is acyclic wrt j j and the transformation is performed withinQ0, then each Pi is acceptable.Proof. It is a standard extension of the proof of Lemma 3.4.3. 2That is, if the initial program is acceptable (wrt some model and some levelmapping) and if the transformation is performed within a subset of P0 which is alsoacyclic (wrt the same level mapping), then the resulting program is acceptable (henceleft-terminating) as well.

32 Chapter 3. Transforming Acyclic Programs3.5 Semantic consequencesFrom the point of view of declarative semantics, acyclic programs enjoy the followingrelevant properties. Here, for the de�nition and the properties of the Well-Foundedmodel semantics we refer to [48].Theorem 3.5.1 Let P be an acyclic program, and let M = �"!P . Then M is total,that is, no atom is unde�ned in it, moreover(i) M is the unique �xpoint of �P ; hence it is the unique three-valued (and alsotwo-valued) Herbrand model of Comp(P) and coincides with Fitting's modelof P .(ii) M coincides with the Well-Founded model of P ;(iii) M coincides with the set of ground atomic logical consequences ofComp(P) [WDCAL in 2 and 3 valued logic;(iv) for all ground atoms A such that no SLDNF-derivation of P [f Ag ounders,� A is true in M i� there exists a SLDNF-refutation for P [f Ag;� A is false in M i� P [f Ag has a �nitely failed SLDNF tree.Proof. The fact that M is total and statement (i) are consequences of Lemma 2:6and Theorem 4:4 in [5]; more general statements are also proven in [8], where the caseof acceptable programs is considered; (ii) is a consequence if (i) and the fact that theWell-Founded model is also a three-valued model of Comp(P) [48]; (iii) and (iv) areconsequences of Theorem 4.4 in [5]. 2Semantics of transformed programsAn immediate consequence of Theorem 3.5.1 is the following.Lemma 3.5.2 Let P0; : : : ; Pn be a transformation sequence, suppose that P0 is acyc-lic, then �"!P0 = �"!Pn .Proof. By Theorem 3.5.1, for each i, the Well-Founded model of Pi coincides with�"!Pi and by Proposition 4.1 in [92], the Well-Founded models of P0 and Pn coincide.2Because of Theorem 3.5.1, Corollary 3.4.4 has also some semantic consequences,the most relevant of which are:Corollary 3.5.3 Let P0; : : : ; Pn be a transformation sequence, suppose that P0 isacyclic, then(a) the Fitting's models of P0 and of Pn coincide;(b) the set of ground logical consequences of Comp(P0) [WDCAL and ofComp(Pn) [WDCAL coincide;(c) for all ground atoms A such that no SLDNF-derivation of P0 [f Ag and ofPn [f Ag ounders,� there exists a SLDNF-refutation for P0 [f Ag i� there exists one forPn [f Ag,

3.5. Semantic consequences 33� all SLDNF trees for P0 [f Ag are �nitely failed i� all SLDNF trees forPn [f Ag are;in particular we have that(d) If P0 is de�nite, then its Finite Failure Set coincides with the one of Pn. 2This shows that if the initial program is acyclic, then the transformation enjoysmost of the properties that were proven for Seki's more restrictive modi�ed folding.In some situations this can be useful for relaxing the applicability of the foldingoperation.

Chapter 4Transforming Normal Logic Programs byReplacement
In this chapter we study simultaneous replacement which consists in performing manyreplacements all at the same time, and de�ne applicability conditions able to guar-antee the correct application of the operation in normal programs with respect tothe semantics of the logical consequences of the program's completion (Kunen's se-mantics). We also take into consideration the case in which we adopt some domainclosure axioms, this will allow us to draw conclusions for Fitting's semantics as well.As we mentioned in chapter 1, a basic requirement for the applicability of replacementis that the replaced and replacing parts are equivalent with respect to the consideredsemantics. But this alone is not su�cient to avoid the risk of introducing a loop. Forthis reason we introduce two new concepts: the semantic delay between two conjunc-tions of literals and the dependency degree of a conjunction of literals wrt a clause:the applicability conditions for replacement we propose compare the semantic delaybetween the two conjunctions of literals and the dependency degree of the replacedpart with the clause to be transformed. In this way it is possible to characterize somesituation in which "there is no space to introduce a loop". Such applicability con-ditions are undecidable in general, but decidable syntactic conditions can be derivedfor special cases. For instance in chapter 5 these results will be used for proving thecorrectness of an unfold/fold transformation sequence wrt Fitting's semantics.Structure of the ChapterIn Section 4.1 we study the correctness of the replacement operation wrt Kunen'ssemantics. In section 4.2 we reformulate the results for the cases in which we adoptsome domain closure axioms. In Section 4.3 some examples are provided and it isshown also how thinning and fattening can be seen as special cases of replacement,thus yielding, as a consequence, conditions for a safe application of these operationsto normal programs. A short conclusion follows. Part of the proofs are given in theAppendices. 35

36 Chapter 4. Transforming Normal Logic Programs by ReplacementThe simultaneous replacement operationThe replacement operation has been introduced by Tamaki and Sato in [96] for de�n-ite programs. Syntactically it consists in substituting a conjunction, ~C, of literals withanother one, ~D, in the body of a clause. Similarly, simultaneous replacement consistsin substituting a set of conjunctions of literals f ~C1; : : : ; ~Cng, with another correspond-ing set of conjunctions f ~D1; : : : ; ~Dng in the bodies of some clauses fcl1; : : : ; clpg of aprogram P . We assume that if i 6= j then ~Ci and ~Cj do not overlap, even if they mayactually represent identical literals, that is, they are either in di�erent clauses or indisjoint subsets of the same clause.Note that, because of the semantics we consider, the order of literals in the bodiesof the clauses is irrelevant.4.1 Correctness wrt Kunen's semanticsOCHO In this Section we will always refer to a �xed but unspeci�ed in�nite language L,that we assume contains all the function symbols of the programs we are consider-ing. Again, by in�nite language, we mean a language that contains in�nitely manyfunctions symbols (including those of arity 0). As we explained in section 2.2, threevalued program's completion semantics in the case of an in�nite language is com-monly referred to as Kunen's semantics.Assume P 0 is obtained by transforming P , then De�nition 2.2.2 (program's equi-valence) is used to de�ne the correctness of a transformation operation as follows.De�nition 4.1.1 Let P , P 0 be normal programs. Suppose that P 0 is obtained byapplying a transformation operation to P . We say that the transformation is� Partially Correct when for each allowed formula �, if CompL(P 0) j= � thenalso CompL(P) j= �.� Complete when for each allowed formula �, if CompL(P) j= � then alsoCompL(P 0) j= �.� Totally Correct or Safe when it is both partially correct and complete. Thisis the case in which P and P 0 are equivalent . 2Note that the transformation is partially correct if all the information contained in(the semantics of) P 0 was already present in (the semantics of) P , that is if no newknowledge was added to the program during the transformation. On the other handthe transformation is complete if no information is lost during the transformation.Partial correctnessWhen we replace the conjunction ~C with ~D in the body of a clause, we are actuallyreplacing a subformula inside a formula, the clause itself. Clearly, some conditionsare needed to guarantee the safeness of the operation. When we abstract from theparticular context, that is from the speci�c clause where the replacement occurs, a

4.1. Correctness wrt Kunen's semantics 37natural condition for replacing a (possibly open) formula � by a (possibly open)formula � is their equivalence in the sense of the following de�nition.Before stating it we need to establish some further notation: given the formulas �,� and �, we denote by �[�=�] the formula obtained from � by replacing all occurrencesof the subformula � by �.De�nition 4.1.2 (equivalence of formulas) Let �, � be �rst order formulas. Wesay that� � is less speci�c or equal to � (wrt CompL(P)), � �CompL(P) �, i� for eachallowed formula � and each substitution �,CompL(P) j= �� implies CompL(P) j= �[�=�]�;� � is equivalent to � wrt CompL(P), � �=CompL(P) �, i� � �CompL(P) � and� �CompL(P) �. 2The following Example shows how the problem of the equivalence of formulasnaturally arises when using the replacement operation.Example 4.1.3 Let us consider the following program:m1(El; [El j Tail]; s(0)):m1(El; [X j Tail]; s(N)) m1(El; Tail;N):m2(El; [El j Tail]):m2(El; [X j Tail]) m2(El; Tail):d : common element(L1; L2) m1(El; L1; N1);m1(El; L2; N2):Both predicates m1 and m2 behave like \member" predicates. The only di�erencebetween the two is that m1 "reports", as third argument, the location where elementEl has been found. As far as the de�nition of common element goes, this is totallyunnecessary, and we can replace the conjunction m1(El; L1; N1);m1(El; L2; N2)with the conjunction m2(El; L1);m2(El; L2) in the body of d, without a�ecting thesemantics of the program. In practice we want to replace clause d withd0 : common element(L1; L2) m2(El; L1);m2(El; L2).Now observe that the completed de�nition of common element before the transform-ation iscommon element(L1; L2),9N; M: m1(El; L1; N);m1(El; L2;M); (4.1)while after the transformation it iscommon element(L1; L2),m2(El; L1);m2(El; L2): (4.2)When applying a replacement we want the replacing conjunction to be semantic-ally equivalent to the replaced one. In this particular case we can formalize thisstatement by requiring the equivalence of the two \bodies", (4.1) and (4.2), of thecompleted de�nition of common element, that is, we require that9N; M: m1(El; L1; N);m1(El; L2;M) �=CompL(P) m2(El; L1);m2(El; L2): (4.3)Which is easy to prove true. 2

38 Chapter 4. Transforming Normal Logic Programs by ReplacementIn (4.3) we have speci�ed two existentially quanti�ed variables: N and M whichare local to the replaced conjunct. If we didn't do so, (4.3) would not hold, asm1(El; L1; N);m1(El; L2;M) 6�=CompL(P) m2(El; L1);m2(El; L2). In the sequel,when replacing, say, ~C with ~D, we always specify a set ~x of \local" variables, whichare variables that can appear in either ~C or ~D (or both) but cannot occur in the restof the clause where ~C is found. Consequently, our �rst requirement is the equivalenceof 9 ~x ~C and 9 ~x ~D. Such an equivalence is weaker than the equivalence between ~Cand ~D, but still su�cient for our purposes.We now formalize this concept of local variables for simultaneous replacement.First let us establish the notation we'll use throughout the chapter.Notation 4.1.4P is the normal program we want to transform.~C1; : : : ; ~Cn are the conjunctions of literals we want to replace with ~D1; : : : ; ~Dn.fcl1; : : : ; clpg is the subset of P consisting of the clauses that are going to be a�ectedby the transformation.P 0 is the result of the transformation. 2De�nition 4.1.5 (locality property) Referring to Notation 4.1.4, we say that aset of variables ~xi satis�es the locality property with respect to ~C i and ~Di if thefollowing holds:� ~xi � V ar(~Ci) [V ar(~Di) and the variables in ~xi do not occur anywhere elseneither in the clause clj, where ~Ci is found, nor, after replacement, in cl0j, where~Di is found. 2Note that the locality property is trivially satis�ed when ~xi is empty. Note alsothat the locality property implies that if ~Ch and ~Ck occur in the same clause then thecorresponding ~xh and ~xk are disjoint.Before we state the result on partial correctness, we have to give a characterizationof the equivalence of formulas wrt Kunen's semantics, which refers solely to the Kleenesequence of the operator �P . Here we denote by FV (�) the set of free variables in aformula �.Lemma 4.1.6 Let P be a normal program, �, � be �rst order allowed formulas and~x = fx1; : : : ; xkg = FV(�) [FV(�), The following statements are equivalent(a) � �CompL(P) �;(b) 8n 9m 8~t �"nP j= (:)�(~t=~x) implies �"mP j= (:)�(~t=~x);where n, m are quanti�ed over natural numbers and ~t is quanti�ed over k-tuples ofL-terms.Proof. The proof is given in the Appendix A. 2We can �nally state the result on partial correctness of the replacement operationwe were aiming at. As we anticipated at the beginning of this Section, when replacing~C with ~D, our �rst requirement is the equivalence of 9 ~x ~C and 9 ~x ~D, where x is a

4.1. Correctness wrt Kunen's semantics 39set of variables satisfying the locality property. However, if we are only interestedin proving the partial correctness of the operation, a partial equivalence (namely,that 9 ~x ~D �CompL(P) 9 ~x ~C) is perfectly su�cient. This is shown by the followingTheorem. Again we adopt Notation 4.1.4.Theorem 4.1.7 (partial correctness) If for each ~Ci 2 f ~C1; : : : ; ~Cng, there existsa (possibly empty) set of variables ~xi satisfying the locality property wrt ~C i and ~Disuch that 9 ~xi ~Di �CompL(P) 9 ~xi ~Cithen the simultaneous replacement operation is partially correct.Proof. First let us make the following observation. With the exception of clausesfcl1; : : : ; clpg, P is just like P 0. Hence if for each i, 9 ~xi ~Ci and 9 ~xi ~Di had the samemeaning in a given interpretation I, (that is, if I j= 9 ~xi ~Ci,9 ~xi ~Di), then we wouldhave that �P (I) = �P 0(I). It follows that whenever �P (I) 6= �P 0(I), there hasto be an index j such that 9 ~xj ~Cj and 9 ~xj ~Dj have di�erent meanings in I. Thisidea is formalized and extended in the following Lemma, whose proof is given in theAppendix A.Lemma 4.1.8 Let I, I 0 be two partial interpretations. If I 0 � I but �P 0(I 0) 6� �P (I),then there exist a conjunction ~Cj 2 f ~C1; : : : ; ~Cng and a ground substitution � suchthat:� either I 0 j= 9 ~xj ~Dj�, while I 6j= 9 ~xj ~Cj�;� or I 0 j= :9 ~xj ~Dj�, while I 6j= :9 ~xj ~Cj�. 2Now we proceed with the proof, which is by contradiction. By Theorems 2.2.3 and2.2.4 the operation is partially correct i� 8n 9m �"mP � �"nP 0 , so let us suppose thereexist two integers i and j such that:�"iP � �"jP 0 and for all integers l; �"lP 6� �"j+1P 0 :Clearly it also follows thatfor all integers l; �"l+i+1P 6� �"j+1P 0 :Since �"j+1P 0 = �P 0(�"jP 0), �"iP � �"jP 0 and �P 0 is monotone, we have that �P 0(�"iP) ��"j+1P 0 , hence for all integers l; �P (�"l+iP) 6� �P 0(�"iP):Since �"l+iP � �"iP , from Lemma 4.1.8, it follows that for each integer l there exist aninteger j(l) 2 f1; : : : ; ng and a ground substitution �l such that:9 ~xj(l) ~Dj(l)�l is true (or false) in �"iP , while 9 ~xj(l) ~Cj(l)�l is not true (resp. false) in �"l+iP .(4.4)By hypothesis 9 ~xj(l) ~Dj(l) �CompL(P) 9 ~xj(l) ~Cj(l), we can then apply Lemma 4.1.6to the left hand side of (4.4). It follows that there has to be an integer r such thatfor each l, 9 ~xj(l) ~Cj(l)�l is true (resp false) in �"rP ;

40 Chapter 4. Transforming Normal Logic Programs by Replacementbut when l satis�es l + i > r, we have that �"l+iP � �"rP and hencefor each l such that l + i > r; 9 ~xj(l) ~Cj(l)�l is true (resp false) in �"l+iP :This contradicts (4.4). 2An immediate consequence of previous Theorem 4.1.7 is the following simpleCorollary on total correctness.Corollary 4.1.9 Using Notation 4.1.4, if for each ~C i 2 f ~C1; : : : ; ~Cng, there existsa (possibly empty) set of variables ~xi satisfying the locality property wrt ~C i and ~Disuch that 9 ~xi ~Di �=CompL(P) 9 ~xi ~Cithen P is equivalent to P 0 i�, for each i, 9 ~xi ~Di �=CompL(P 0) 9 ~xi ~Ci.Proof.\if". From the assumption that 9 ~xi ~Di �=CompL(P) 9 ~xi ~Ci and Theorem 4.1.7it follows that for each allowed formula �, if CompL(P 0) j= � then CompL(P) j= �.Now P can be re-obtained from P 0 by replacing back each ~Di with ~Ci, moreover eachset of variables ~xi satis�es the locality property wrt ~Ci and ~Di also in P 0. Since byhypothesis 9 ~xi ~Di �=CompL(P 0) 9 ~xi ~Ci, from Theorem 4.1.7 it also follows that , ifCompL(P) j= �, then CompL(P 0) j= �.\only if". It is easy to see that if 9 ~xi ~Di �=CompL(P) 9 ~xi ~Ci and P is equivalentto P 0 then 9 ~xi ~Di �=CompL(P 0) 9 ~xi ~Ci. 2Roughly speaking, this Corollary states that if the replacing and the replacedconjunctions are equivalent both in the initial and the resulting program, then thetransformation is safe.Of course this result requires some knowledge of the the semantics of the resultingprogram and therefore it is not quite satisfactory: what we want are applicabilityconditions for the replacement operation which are based solely on the semanticproperties of the initial program. To this is devoted the rest of this Section.Semantic Delay and Dependency DegreeAs we proved in the previous Section, if ~x is a set of variables that satis�es the localityproperty, the equivalence of 9 ~x ~C and 9 ~x ~D wrt CompL(P) is su�cient to guaranteethe partial correctness of the replacement. Unfortunately this is not enough to ensuretotal correctness.This is shown by the next Example.Example 4.1.10 Let P be the following de�nite program:P = f p q:cl : q r:r: gLet also L = L(P). In this case p, q and r are all true in all the models of CompL(P),

4.1. Correctness wrt Kunen's semantics 41they are actually equivalent wrt CompL(P). However, if we replace r with p in thebody of cl we obtainP 0 = f p q:cl0 : q p:r: gwhich is by no means equivalent to the previous program. In fact we have introduceda loop and p and q are no more true in all the models of CompL(P). 2In order to obtain the desired completeness results we introduce two more con-cepts: the semantic delay and the dependency degree. They are meant to expressrelations between �rst order formulas, such as conjunctions of literals, in terms oftheir semantic properties.Consider the following de�nite program:P = f m(X) n(s(X)):n(0):n(s(X)) n(X): gThe predicatesm and n have exactly the same meaning, but in order to refute the goal m(s(0)): we need four resolution steps, while for refuting n(s(0)): two stepsare su�cient. Each time n(t): has a refutation (or �nitely fails) with j resolutionsteps, m(t): has a refutation (or fails) with k resolution steps, where k � j + 2.By transposing this idea into the three valued semantics we are adopting, we havethat each time n(t) is true (or false) in �"jP , m(t) is true (resp. false) in �"j+2P . Wecan formalize this intuitive idea by saying that the semantic delay of m wrt n is 2.De�nition 4.1.11 (semantic delay in �"!P) Let P be a normal program, � and� be �rst order formulas, and ~x = fx1; : : : ; xkg = FV(�) [FV(�). Suppose that� �CompL(P) �.� The semantic delay of � wrt � in �"!P is the least integer k such that, for eachinteger n and each k-uple of L-terms ~t: if �"nP j= (:)�(~t=~x), then �"n+kP j=(:)�(~t=~x). 2Notice that since we are assuming that � �CompL(P) �, if �(~t=~x) is true in some �"nP ,then there has to exists an integer m such that �(~t=~x) is true in �"mP .Intuitively, �(~t=~x) is true in �"nP i� its truth has been proved from scratch in at mostn steps. The semantic delay of � wrt � shows how many steps later than �(~t=~x), wedetermine the truth value of �(~t=~x) (at worse).Example 4.1.12 Let P be the following program:P = f p(0): q(0):p(s(0)): q(s(X)) q(X):p(s(s(X))) p(X): gp and q both compute natural numbers, and p(X) �=CompL(P) q(X), but while

42 Chapter 4. Transforming Normal Logic Programs by Replacementq(sk(0)) is true starting from �"k+1P , p(sk(0)) is true starting from �"(k=2)+1P . Thedelay of p(X) wrt q(X) in �"!P is zero, in fact if for some ground term t and integern, q(t) is true (resp. false) in �"nP , then p(t) is also true (resp. false) in �"nP . Viceversa, the delay of q(X) wrt p(X) is not de�nable, in fact there exists no integerm < ! such that if, for some ground term t and integer n, p(t) is true (resp. false)in �"nP , then q(t) is true (resp. false) in �"n+mP . 2A simple property of semantic delay which is used in the sequel is the following.Lemma 4.1.13 If d : A ~L: is the only clause in a program P whose head uni-�es with an atom A, and ~w is the set of variables local to the body of d, ~w =V ar(~L)nV ar(A), then� A �=CompL(P) 9 ~w ~L;� the delay of A wrt 9 ~w ~L in �"!P is one.Proof. It is a straightforward application of the de�nition of Fitting's operator, since,by De�nition 2.1.6, for all integers r and substitutions �, (9 ~w ~L)� is true (false) in�rP i� A� is true (false) in �r+1P . 2Now we want to introduce one further concept: the dependency degree. Let usconsider the following normal program:P = f c1 : p :q; s:c2 : q r:c3 : r:c4 : s q: gThe de�nitions of the atoms p, q, s and r, all depend from clause c3. Informally wecould say that the dependency degree of the predicate p over clause c3 is two, as theshortest derivation path from a clause having head p to c3 contains two arcs: the �rstfrom c1 to c2, through the negative literal :q; the second from c2, to c3, through theatom r. Similarly, the dependency degree of q and s on c3 are respectively one andtwo and the dependency degree of r on c3 is zero. The next de�nition formalizes thisintuitive notion. The atom A and the clause cl are assumed to be standardized apart.De�nition 4.1.14 (dependency degree) Let P be a program, cl a clause of Pand A an atom. The dependency degree of A (and :A) on cl, depenP (A; cl), is0 if A uni�es with the head of cl;n+1 if A does not unify with the head of cl and n is the least integer such that thereexists a clause C C1; : : : ; Ck. in P , whose head uni�es with A via mgu, say,�, and, for some i, depenP (Ci�; cl) = n;! when there exists no such n. In this case we say that A is independent from cl.Now let ~L = L1; : : : ; Ln be a conjunction of literals. The dependency degree of ~L oncl is equal to the least dependency degree of one of its elements on cl, depenP (~L; cl) =inffdepenP (Li; cl); where 1 � i � ng. Similarly, ~L is independent from cl i� all itscomponents are independent from cl. 2

4.1. Correctness wrt Kunen's semantics 43The following Example shows how the concepts of dependency degree and semanticdelay can be used to prove the safeness of the replacement operation.Example 4.1.15 Consider the following normal program:P = f d : p(X) :q(X):cl : r : : : ;:q(t); : : :: : : gwhere d is the only clause de�ning the predicate symbol p. By Lemma 4.1.13p(X) �=CompL(P) :q(X). Now, if we replace :q(t) with p(t) in cl, we obtain thefollowing program:P 0 = f d : p(X) :q(X):cl : r : : : ; p(t); : : :: : : gwhich has the same Kunen's semantics of the previous one, that is the set of logicalconsequences of CompL(P) and of CompL(P 0) are identical. This holds even if thede�nition of p is not independent from cl; that is, even if we are exposed to the riskof introducing a loop, losing completeness. But in this case we can show that \thereis no room for introducing a loop"; in fact� the dependency degree of p on cl (this is how big the loop would be) is greateror equal to the semantic delay of p(X) wrt :q(X) (this can be seen as the\space" where the loop would have to be introduced).By Lemma 4.1.13 the delay of p(X) wrt :q(X) in �"!P is one; moreover, since d is theonly clause de�ning the predicate p and d 6= cl, depenP (p(X); cl) > 0, thus satisfyingthe above conditions. 2CompletenessThe aim of this section is to provide a completeness result which formalizes the ideaoutlined in Example 4.1.15 and that matches with Theorem 4.1.7. Throughout thisSection we adopt Notation 4.1.4.Let us �rst state a few simple results.The �rst Remark states that when a conjunction of literals ~L is independent fromclauses fcl1; : : : ; clpg then its meaning does not change when replacing fcl1; : : : ; clpgwith fcl01; : : : ; cl0pg.Remark 4.1.16 Let ~L be a conjunction of literals independent from the clausesfcl1; : : : ; clpg in P . Let ~w = V ar(~L), Then, for each ordinal �,� �"�P j= (:)9 ~w ~L i� �"�P 0 j= (:)9 ~w ~L. 2The following Lemma represents an important step in the proof of the complete-ness result.Let I be an L-interpretation and B a ground atom that can be proved true (orfalse), starting from I, in m steps, that is, B is true in �"mP (I). The Lemma states

44 Chapter 4. Transforming Normal Logic Programs by Replacementthat if the dependency level of B on fcl1; : : : ; clpg is greater or equal to m, then theclauses fcl1; : : : ; clpg cannot have been used in the proof of B, hence B is true in�"mP 0 (I) too.Lemma 4.1.17 LetB be a ground atom,m a natural number such that depenP (B; fcl1; : : : ; clpg) �m; then� B is true (resp. false) in �"mP (I) i� B is true (resp. false) in �"mP 0 (I).Proof. The proof is by induction on m.The base of the induction (m = 0) is trivial, since �"0P 0(I) = �"0P (I) = I:Induction step: m > 0. We will now proceed as follows: in a) we show that if Bis true (resp. not false) in �"mP (I), then it is also true (resp. not false) in �"mP 0 (I).That is, we show that if B is true in �"mP (I), then it is also true in �"mP 0 (I); and, bycontradiction, that if B is false in �"mP 0 (I), then it is also false in �"mP (I). In b) weconsider the converse implications. This will be su�cient to prove the thesis.a) Let us assume B true (resp. not false) in �"mP (I). There has to be a clausec 2 P and a ground substitution such that head(c) = B and body(c) is true (resp.not false) in �"m�1P (I). It follows that, for each literal L belonging to body(c):- L is true (resp. not false) in �"m�1P (I);- depenP (L; fcl1; : : : ; clpg) � m� 1.Then, from the inductive hypothesis, each L is true (resp. not false) in �"m�1P 0 (I).Since depenP (B; fcl1; : : : ; clpg) � m > 0, B does not unify with the head of anyclause in fcl1; : : : ; clpg, that is c 62 fcl1; : : : ; clpg. Hence c 2 P 0 and B is true (notfalse) in �"mP 0 (I).b) Now we have to prove that if B is true (not false) in �"mP 0 (I), then it is alsotrue (not false) in �"mP (I). This part is omitted as it is perfectly symmetrical to theprevious one. 2The previous Lemma leads to the following generalization.Lemma 4.1.18 Let ~L be a conjunction of literals, ~w = V ar(~L) and I be an L-interpretation. Suppose that, for some integer m, depenP (~L; fcl1; : : : ; clpg) � m,then,� �"mP (I) j= (:)9 ~w ~L i� �"mP 0 (I) j= (:)9 ~w ~L.Proof. Let ~L = L1; : : : ; Lj. Observe that depenP (~L; fcl1; : : : ; clpg) � m implies thatfor i 2 [1; j], depenP (Li; fcl1; : : : ; clpg) � m.Suppose �rst that 9 ~w ~L is true in �"mP (I). Then for some ground substitution �,with Dom(�) = ~w, ~L� is true in �"mP (I). Then for i 2 [1; j], Li� is true in �"mP (I),and by Lemma 4.1.17, it is true also in �"mP 0 (I). Hence the conjunction ~L� is true in�"mP 0 (I). It follows that 9 ~w ~L is true in �"mP 0 (I).Now suppose that 9 ~w ~L is false in �"mP (I). Then for each ground substitution �,with Dom(�) = ~w, ~L� is false in �"mP (I). That is, for each of the above �, there existsan i 2 [1; j] such that Li� is false in �"mP (I). By Lemma 4.1.17 Li� is also false in�"mP 0 (I). Hence ~L� is false in �"mP 0 (I). It follows that 9 ~w ~L is false in �"mP 0 (I). 2

4.1. Correctness wrt Kunen's semantics 45We can now state the completeness result. As before, we refer to Notation 4.1.4.Recall that, when replacing ~C with ~D, in order to prove the partial correctnessof the replacement operation, we required that 9 ~x ~D �CompL(P) 9 ~x ~D, where x isa set of variables satisfying the locality property. It should be no surprise that toprove the completeness of the operation we have to require the opposite side of theequivalence, namely that 9 ~x ~C �CompL(P) 9 ~x ~D.Theorem 4.1.19 (completeness) If for each ~Ci 2 f ~C1; : : : ; ~Cng, there exists a(possibly empty) set of variables ~xi satisfying the locality property wrt ~C i and ~Disuch that 9 ~xi ~Ci �CompL(P) 9 ~xi ~Di;and if one of the following two conditions holds:(a) f ~D1; : : : ; ~Dng are all independent from the clauses fcl1; : : : ; clpg; or(b) there exists an integer m such that, for each ~Ci 2 f ~C1; : : : ; ~Cng, and eachclj 2 fcl1; : : : ; clpg:- the delay of 9 ~xi ~Di wrt 9 ~xi ~Ci in �"!P is less or equal to m, and- depenP (~Di; clj) � m;then the simultaneous replacement operation is complete.Proof. First we need to establish a Lemma similar to the one in the proof of Theorem4.1.7.Lemma 4.1.20 Let I, I 0 be two partial interpretations. If I � I 0 but �P (I) 6��P 0(I 0), then there exist a conjunction ~Cj 2 f ~C1; : : : ; ~Cng and a ground substitution� such that:� either I j= 9 ~xj ~Cj�, while I 0 6j= 9 ~xj ~Dj�;� or I j= :9 ~xj ~Cj�, while I 0 6j= :9 ~xj ~Dj�.Proof. The proof is identical to the one given in the Appendix A for Lemma 4.1.8 inTheorem 4.1.7, and it is omitted. 2Again the proof of the Theorem is by contradiction. By Theorems 2.2.3 and 2.2.4 theoperation is complete i� 8n 9 m �"nP � �"mP 0 , so let us suppose that there exist twointegers i and j such that:�"iP 0 � �"jP and for all integers l; �"i+l+1P 0 6� �"j+1P :Since �"j+1P = �P (�"jP), from Lemma 4.1.20 we have that:for each integer l there exists an integer j(l) 2 f1; : : : ; ng and a ground substitution�l such that:9 ~xj(l) ~Cj(l)�l is true (or false) in �jP ; while 9 ~xj(l) ~Dj(l)�l is not true (resp. not false) in �"i+lP 0 :(4.5)Let us distinguish two cases.1) Hypothesis (a) is satis�ed and each conjunction in f ~D1; : : : ; ~Dng is independentfrom fcl1; : : : ; clpg. By hypothesis 9 ~xi ~Ci �CompL(P) 9 ~xi ~Di, we can then apply

46 Chapter 4. Transforming Normal Logic Programs by ReplacementLemma 4.1.6 to the left hand side of (4.5), it follows that there has to be an integerr such that for each l,9 ~xj(l) ~Dj(l)�l is true (resp. false) in �rP :From Remark 4.1.16, it follows that for each integer l, 9 ~xj(l) ~Dj(l)�l is true (resp.false) in �rP 0 .This contradicts (4.5); in fact, when i+ l > r, by the monotonicity of �P 0 , we havethat �rP 0 � �i+lP 0 and since 9 ~xj(l) ~Dj(l)�l is true (resp. false) in �rP 0, it must be true(resp. false) in �i+lP 0 .2) Hypothesis (b) is satis�ed. We know that for each integer l, the delay of9 ~xj(l) ~Dj(l) wrt 9 ~xj(l) ~Cj(l) is not greater than m, hence from the left hand side of(4.5) it follows that,for each l; 9 ~xj(l) ~Dj(l)�l is true or false in �j+mP :Since �j+mP = �mP (�jP), it follows that,for each l; 9 ~xj(l) ~Dj(l)�l is true (resp. false) in �mP (�jP):depenP (~Dj(l)�l; fcl1; : : : ; clpg) � m, then, from Lemma 4.1.18 it follows that,for each l; 9 ~xj(l) ~Dj(l)�l is true (resp. false) in �mP 0(�jP):Now �jP � �iP 0 and �P 0 is monotone, then,for each l; 9 ~xj(l) ~Dj(l)�l is true (resp. false) in �mP 0(�iP 0) = �m+iP 0 ;this contradicts the right hand side of (4.5). 2Finally, from Theorems 4.1.7 and 4.1.19 we obtain the following safeness result forthe replacement operation.Corollary 4.1.21 (applicability conditions for the replacement operation) UsingNotation 4.1.4, if for each ~Ci 2 f ~C1; : : : ; ~Cng, there exists a (possibly empty) set ofvariables ~xi satisfying the locality property wrt ~C i and ~Di such that9 ~xi ~Di �=CompL(P) 9 ~xi ~Ciand one of the following two conditions holds:1. f ~D1; : : : ; ~Dng are all independent from the clauses in fcl1; : : : ; clpg; or2. there exists an integer m such that, for each ~Ci 2 f ~C1; : : : ; ~Cng, and eachclj 2 fcl1; : : : ; clpg:- the delay of 9 ~xi ~Di wrt 9 ~xi ~Ci in �"!P is less or equal to m, and- depenP (~Di; clj) � m;then the simultaneous replacement operation is safe, that is P is equivalent to P 0. 2

4.1. Correctness wrt Kunen's semantics 47Conditions 1 and 2 reect two di�erent ways in which we can guarantee that weare not introducing dangerous loops. Condition 2 is automatically satis�ed when,for each i, the semantic delay of 9 ~xi ~Di wrt 9 ~xi ~Ci in �"!P is zero. This is probablythe most interesting situation in which it can be applied. Recall that the semanticdelay of 9 ~xi ~Di wrt 9 ~xi ~Ci shows (for each �) how many steps later than 9 ~xi ~Ci�, wedetermine the truth value of 9 ~xi ~Di� (at worse). Therefore, when the delay is zero,we can determine the truth value of 9 ~xi ~Di� \faster" than the truth value 9 ~xi ~Ci�.By stretching the notation we could say that in this case 9 ~xi ~Di is \more e�cient"than 9 ~xi ~Ci. By the above Corollary we have that if the replacing conjunctions are\equivalent to" and \more e�cient than" the replaced ones, then the replacementis safe. This �ts well in a context where transformation operations are intendedfor increasing the performances of programs. Of course here we are referring to abottom-up way of determining truth values, while most resolutions methods employ atop-down search, hence what is considered \more e�cient" here may not necessarilybe \more e�cient" when we actually run the program.Other SemanticsCorollary 4.1.21 can easily be applied to other declarative semantics. Basically whatwe need is a de�nition of equivalence and semantic delay: any model theoretic se-mantics which can be de�ned in terms of the Kleene sequence of some operator ispotentially suitable. For example the Well-Founded semantics is appropriate, whilethe 2-valued completion semantics (considered in [47]) is not, as it lacks a construct-ive de�nition. Of course, when we change the semantics we refer to, the concept ofequivalence of programs and formulas can di�er signi�cantly.Let us for example consider the S-semantics [39], a model theoretic reconstructionof the computed answer semantics1. The S-semantics does not take into considerationthe negative information that can be inferred from (the completion of) a program.This inuences signi�cantly the applicability conditions of replacement. Consider forinstance the following program: P = fcl : p q; p:gq has no de�nition and therefore it fails. If we eliminate q from the body of cl, weobtain P 0 = fcl : p p:gThe S-semantics (as well as the least Herbrand model semantics) of P and P 0 coincide(they are both empty as both p and q do not succeed in either program), so thistransformation is (S-)safe. Now let us show how the S-correspondent of Corollary4.1.21 can be applied to this situation: the transformation of P into P 0 can be seenas a replacement of q; p with p in the body of cl, and we have that- q; p is equivalent to p in the S-semantics of P (neither succeeds),- the delay of p wrt q; p in T !S (P)2 is zero,1A result similar to Corollary 4.1.21 for the S-semantics is given in [20]2TS (P) is the S-semantics counterpart of �P

48 Chapter 4. Transforming Normal Logic Programs by Replacement- depenP (p; cl) = 0,Hence the applicability conditions for the S-version of Corollary 4.1.21 are satis�ed.Now, if we switch back to Kunen's semantics, P is no longer equivalent to P 0, infact, CompL(P) j= :p while CompL(P 0) 6j= :p. In the transformation we have lostsome negative information, the replacement is therefore not (Kunen-)safe. Indeed,the applicability conditions of Corollary 4.1.21 are not satis�ed as- q; p �=CompL(P) p,- the delay of p wrt q; p in �"!P is one. (�"1P j= :(q; p), while �"2P j= :p),- depenP (p; cl) = 0,Here the delay of p wrt q; p is greater than depenP (p; cl) and consequently Corollary4.1.21 is no longer applicable. This is due to the fact that, since we are now takinginto account also the negative information, the delay of p wrt q; p is no longer zero.However, there exists a semantics, the Well-Founded semantics, that does takeinto consideration negative information, but for which the above programs P and P 0are nevertheless equivalent. Loosely speaking, the Well-Founded semantics does notdistinguish �nite from in�nite failure. So the query p fails both in P (�nitely) andin P 0 (in�nitely). The authors have also stated a counterpart of Corollary 4.1.21 forthis semantics [38]. It can be applied to the transformation performed above: we havethat q; p is equivalent to p and that the delay of p wrt q; p is zero. The applicabilityconditions for the replacement operation are then, in this context, satis�ed.Checking applicability conditionsDetermining whether two conjunctions of literals are equivalent is in general an unde-cidable problem, moreover, the semantic delay is not a computable function, and forthis reason Corollary 4.1.21 must be regarded as a theoretical result. It is thereforeimportant to single out some situations in which its hypothesis can be guaranteedeither by a syntactic check or, when the replacement belongs to a transformationsequence, by the previous history of the transformation. This Section shows some ofthese situations. Later, in Section 4.3 we also show an example of a transformationsequence in which the conditions of Corollary 4.1.21 are checked by hand. We hopethat this provides a better understanding of the concepts we use.Reversible foldingWe now show how Corollary 4.1.21 can be used to prove the correctness of thereversible folding operation, which is the kind of folding operation studied in [67, 47].First of all let us state its de�nition.De�nition 4.1.22 (reversible folding) Let cl : A ~B0; ~S: and d : H ~B bedistinct clauses in a program P ; let also ~w be the set of local variables of d, ~w =V ar(~B)nV ar(H). If there exists a substitution �, Dom(�) = V ar(d) such that(i) ~B0 = ~B�;(ii) � does not bind the local variables of d, that is for any x; y 2 ~w the followingthree conditions hold

4.1. Correctness wrt Kunen's semantics 49� x� is a variable;� x� does not appear in A, ~S, H�;� if x 6= y then x� 6= y�;(iii) d is the only clause of P whose head uni�es with H�;then we can fold H� in cl, obtaining cl0 : A H�; ~S: 2Example 4.1.23 Let us consider the following program:P = f cl : p(X) q(X; b);:s(X); r(a;X):d : r(Z; Y) q(Y;Z);:s(Y):r(a; Y) p(Y):q(X; a):q(X; b): gWith � = fb=Z;X=Y g, we have body(d)� = (q(X; b);:s(X)) and that d is the onlyclause of P whose head uni�es with r(Z; Y)�. Hence we can fold clause cl, thusobtaining the program:P = f cl : p(X) r(b;X); r(a;X):d : r(Z; Y) q(Y;Z);:s(Y):r(a; Y) p(Y):q(X; a):q(X; b): g 2This operation can be seen as a special case of replacement in which the conditionsof Corollaries 4.1.21 are always satis�ed. First of all notice that, by using the notationof De�nition 4.1.22, the operation reduces to a replacement of ~B0 with H�. Now bythe conditions on folding (i): : :(iii) and Lemma 4.1.13, we have that- ~w satis�es the locality property wrt ~B0 and H, (recall that ~w is the set of localvariables of d);- H� is equivalent to 9 ~w� ~B0, (Lemma 4.1.13);- the delay of H� wrt 9 ~w� ~B0 in �"!P is one, (Lemma 4.1.13).Finally, from (iii) we also have that the dependency degree of depenP (H�; cl) > 0.Hence, the applicability conditions of Corollary 4.1.21 are satis�ed and the operationis safe.Recursive foldingThe reversible folding operation is a rather restrictive kind of folding, in particularit lacks the possibility of introducing recursion in the de�nition of predicates. Thiscan be done via an unfold/fold transformation sequence. Unfold/fold transformationsequences were introduced in the area of logic programming by Tamaki and Sato [96]and, as a large literature shows, proved to be an e�ective methodology for program'sdevelopment and optimization.The following Example shows how this kind of folding can be used for introducingrecursion in de�nitions.

50 Chapter 4. Transforming Normal Logic Programs by ReplacementExample 4.1.24 We start with the following program where initial de�nes the prop-erty of being a pre�x of a list.P0 = f d : initial(Xs;Zs) append(Xs; Y s; Zs):append([AjXs]; Y s; [AjZs]) append(Xs; Y s; Zs):append([]; Y s; Y s): gWe now unfold the body of the �rst clause, obtaining the two clausesP1 = f cl : initial([AjXs]; [AjZs]) append(Xs; Y s; Zs):initial([]; Zs):: : : together with the clauses de�ning append gThe safeness of the unfolding operation is proven in Appendix C. Now we can foldappend(Xs; Y s; Zs) in the body of the �rst clause, using d as folding clause. WeobtainP2 = f cl0 : initial([AjXs]; [AjZs]) initial(Xs, Zs)initial([];Zs):: : : together with the clauses de�ning append gThe predicate initial has now a recursive de�nition.Notice that the folding operation of the above example can be seen as a replace-ment of append(Xs; Y s; Zs) with initial(Xs;Zs), and also in this case the applicab-ility conditions of Corollary 4.1.21 are satis�ed, in fact we have that:- Y s satis�es the locality property wrt append(Xs; Y s; Zs) and initial(Xs;Zs)in P1;- initial(Xs;Zs) �=CompL(P1) 9Y s append(Xs; Y s; Zs);- the delay of initial(Xs;Zs) wrt 9Y s append(Xs; Y s; Zs) in P1 is zero.The last two statements are also consequences of the following more general resultwhich will be proven in chapter 5 (it follows directly from Lemma 5.3.2).Observation 4.1.25 Let H ~B be a non-recursive clause in a program P and, ~w beits set of local variables ~w = V ar(~B)nV ar(H). If P 0 is a program obtained from Pby unfolding all the atoms in ~B then H �=CompL(P 0) 9 ~w B, and the delay of H wrt9 ~w ~B in P 0 is zero. 2This provides a further example of the kind of situations to which Corollary4.1.21 can be applied. Actually, chapter 5 we'll prove a correctness result over thecorrectness of unfold/fold transformation sequence by using the above observationand Fitting's counterpart of Corollary 4.1.21, Corollary 4.2.7.4.2 Correctness wrt other semanticsThe results we've just proved can be adapted to the cases in which we adopt somedomain closure axioms. As we have seen in chapter 2 the adoption of such axiomsis important when the underlying language L is �nite. Recall that the two kind of

4.2. Correctness wrt other semantics 51domain closure axioms we'll adopt are the weak domain closure axioms (WDCAL)and the strong domain closure axioms (DCAL), both reported in de�nition 2.3.1.It is important to observe that when we adopt some domain closure axioms, wehave to modify in the obvious way the De�nitions of programs equivalence (2.2.2),of formulas equivalence (4.1.2) and of correctness of a transformation (4.1.1).Correctness Results wrt CompL(P) [WDCALAs we explained in Section 2.3.1, as far as we are concerned the semantics given byCompL(P) [WDCAL (with L possibly �nite) behaves exactly as Kunen's semantics.Consequently, the results that we can prove on formula's equivalence and on thereplacement operation are identical to the ones given in the previous Section. Inparticular Corollary 4.1.9, Lemma 4.1.6 on the equivalence of formulas, Theorems4.1.7, 4.1.19 and Corollary 4.1.21 hold also for this semantics. Let us now restate thisCorollary.Corollary 4.2.1 (applicability conditions wrt CompL [WDCAL) Using Nota-tion 4.1.4, if for each ~C i 2 f ~C1; : : : ; ~Cng, there exists a (possibly empty) set ofvariables ~xi satisfying the locality property wrt ~C i and ~Di such that9 ~xi ~Di is equivalent to 9 ~xi ~Ci wrt CompL(P) [WDCAL;and one of the following two conditions holds:1. f ~D1; : : : ; ~Dng are all independent from the clauses in fcl1; : : : ; clpg; or2. there exists an integer m such that, for each ~Ci 2 f ~C1; : : : ; ~Cng, and eachclj 2 fcl1; : : : ; clpg:- the delay of 9 ~xi ~Di wrt 9 ~xi ~Ci in �"!P is less or equal to m, and- depenP (Di; clj) � m;then the simultaneous replacement operation is safe, that is P is equivalent to P 0 (wrtCompL(P) [WDCAL). 2Correctness Results wrt Fitting's SemanticsIn this section we refer to the semantics given by CompL(P)L [DCAL. As we haveseen in Section 2.3.2, this semantics corresponds to Fitting's model semantics. UsingTheorem 2.3.5 we can easily characterize the correctness of the transformation wrtto this semantics by referring to the least �xed point of the �P operator.Lemma 4.2.2 Let P , P 0 be normal programs and L be a �nite language. Supposethat P 0 is obtained by applying a transformation operation to P . Then the operationis � partially correct i� Fit(P) � Fit(P 0);� complete i� Fit(P) � Fit(P 0);� totally correct (safe) i� Fit(P) = Fit(P 0). 2

52 Chapter 4. Transforming Normal Logic Programs by ReplacementPartial CorrectnessWe now consider the problem of proving partial correctness of the replacement oper-ation. When we replace the conjunction ~C with ~D, the �rst natural requirement weask for, is the equivalence of ~C and ~D wrt CompL(P) [DCAL.Here we need again Theorem 2.3.5 in order to give a characterization of theequivalence of formulas wrt CompL(P) [DCAL. First we introduce the three valuedoperator) , which is \one side" of , and it is de�ned as follows: �) � is truei� � is less speci�c than �, that is if � and � are both true (or both false) or if � isunde�ned. In any other case �) � is false.Lemma 4.2.3 Let �, � be �rst order allowed formulas and P be a normal program.The following statements are equivalent:(a) � �CompL(P) [DCAL �;(b) Fit(P) j= �) �:Proof. The proof is given in Appendix A. 2Statement (b) di�ers from the corresponding one of Lemma 4.1.6. In Lemma 4.1.6we were considering the completion with an in�nite language, which as far as thisLemma is concerned, is equivalent to assuming a �nite language and WDCAL. Insuch cases the universe of a model of CompL(P) may contain non-standard elements,that is, elements which are not L-terms. Hence the equivalence between all the closedinstances of � and � alone is not su�cient to ensure the equivalence between � and�. For example, if we consider the following program where, for simplicity, we referto WDCAL:P = f n(0):n(s(X)) n(X):m(X): gand we �x L = L(P), we have that for each L-term t, both n(t) and m(t) are true inall models of CompL(P) [WDCAL, but n(X) 6�=CompL(P) [WDCAL m(X). In fact,let � � 8x m(x), then CompL(P) [WDCAL j= �, while CompL(P) [WDCAL 6j=�[n(x)=m(x)] (see Example 2.3.2). Indeed m(X) and n(X) must not be consideredequivalent wrt CompL(P) [WDCAL, in fact if we consider the following extensionto program P :P1 = P [f q1 :n(X):q2 :m(X): gand L = L(P1), n(X) is equivalent to m(X) while q1 is not equivalent to q2.Next we give the theorem on partial correctness of the replacement operation wewere aiming at. It still shows that a partial equivalence between the replacing andthe replaced literals is su�cient to ensure the partial correctness of the replacementoperation.

4.2. Correctness wrt other semantics 53Theorem 4.2.4 (partial correctness) Let us adopt Notation 4.1.4, if for each~C i 2 f ~C1; : : : ; ~Cng, there exists a (possibly empty) set of variables ~xi satisfyingthe locality property wrt ~Ci and ~Di such that9 ~xi ~Di �CompL(P)[DCAL 9 ~xi ~Cithen the simultaneous replacement operation is partially correct.Proof. The proof is by contradiction. By Lemma 4.2.2 and the fact that Fit(P) =lfp(�P), we have that the operation is partially correct i� lfp(�P) � lfp(�P 0), solet us suppose lfp(�P) 6� lfp(�P 0). Since the sequence �"0P 0 ;�"1P 0; : : : is monotonicallyincreasing and �"0P 0 = (;; ;) � lfp(�P), there has to be an ordinal � such thatlfp(�P) � �"�P 0 and lfp(�P) 6� �"�+1P 0 = �P 0(��P 0):Hence lfp(�P) 6� �P 0(lfp(�P)) and �P 0(lfp(�P)) � �P 0(��P 0), since � is monotone.Since �P (lfp(�P)) = lfp(�P) we have that�P (lfp(�P)) 6� �P 0(lfp(�P)): (4.6)From Lemma 4.1.8 and (4.6) it follows that there exists an integer j and a groundsubstitution � such that 9 ~xj ~Dj� is true (or false) in lfp(�P), while 9 ~xj ~Cj� is not.This, by Lemma 4.2.3, contradicts the hypothesis. 2As it happened with Theorem 4.1.7, this result brings us to a �rst complete-ness result: with the notation of the previous Theorem, if for each i we also havethat 9 ~xi ~Di �=CompL(P) [DCAL 9 ~xi ~Ci, then the transformation is safe i� for eachi, 9 ~xi ~Di �=CompL(P 0) [DCAL 9 ~xi ~Ci. The proof is identical to the one given forCorollary 4.1.9.CompletenessWe want a completeness result which matches with Theorem 4.1.19. First of all weneed a slightly stronger de�nition of semantic delay.De�nition 4.2.5 (semantic delay in lfp(�P)) Let P be a normal program, � and� be �rst order formulas, and ~x = fx1; : : : ; xkg = FV(�) [FV(�). Suppose that� �CompL(P)[DCAL �.� The semantic delay of � wrt � in lfp(�P) is the least integer k such that,for each ordinal � and each k-uple of L-terms ~t: if �"�P j= (:)�(~t=~x), then�"�+kP j= (:)�(~t=~x). 2Unsurprisingly, the di�erence between this De�nition and the one of semanticdelay in �"!P (4.1.11) is that here we also have to consider ordinals which are greaterthat !.Now we can prove the completeness result in this case.

54 Chapter 4. Transforming Normal Logic Programs by ReplacementTheorem 4.2.6 (completeness) In the hypothesis of 4.1.4, if for each ~Ci 2 f ~C1; : : : ; ~Cng,there exists a (possibly empty) set of variables ~xi satisfying the locality property wrt~C i and ~Di such that 9 ~xi ~Ci �CompL(P) [DCAL 9 ~xi ~Di;and if one of the following two conditions holds:(a) f ~D1; : : : ; ~Dng are all independent from the clauses fcl1; : : : ; clpg; or(b) there exists an integer m such that, for each ~Ci 2 f ~C1; : : : ; ~Cng, and eachclj 2 fcl1; : : : ; clpg:- the delay of 9 ~xi ~Di wrt 9 ~xi ~Ci in lfp(�P) is less or equal to m, and- depenP (~Di; clj) � m;then the simultaneous replacement operation is complete.Proof. The proof is by contradiction. By Lemma 4.2.2 and the fact that Fit(P) =lfp(�P) we have that the operation is complete i� lfp(�P) � lfp(�P 0), so let us supposethat lfp(�P) 6� lfp(�P 0). By the same argument used in the proof of Theorem 4.2.4,it follows that there exists an ordinal � such that:lfp(�P 0) � �"�P and lfp(�P 0) 6� �"�+1P :Since �P 0(lfp(�P 0)) = lfp(�P 0), it follows that �P 0(lfp(�P 0)) � �P (��P).From Lemma 4.1.20 there exists an integer j and a ground substitution � such that:9 ~xj ~Cj� is true (or false) in ��P ; while 9 ~xj ~Dj� is not true (resp. not false) in lfp(�P 0):(4.7)Let us distinguish two cases.1) Condition (a) of the hypothesis applies, and ~Dj is independent from fcl1; : : : ; clpg.Since ��P � lfp(�P), from the left hand side of (4.7), 9 ~xj ~Cj� is also true (resp. false)in lfp(�P).Hence, by the hypothesis and Lemma 4.2.3, also 9 ~xj ~Dj� is true (resp. false) inlfp(�P). Because of condition (a) and Remark 4.1.16, 9 ~xj ~Dj� is true (resp. false)in lfp(�P 0). This contradicts the left hand side of (4.7).2) Condition (b) of the hypothesis applies. The delay of 9 ~xj ~Dj wrt 9 ~xj ~Cj is notgreater thatm, hence from the left hand side of (4.7) it follows that 9 ~xj ~Dj� is true (or false) in ��+mP ;that is, 9 ~xj ~Dj� is true (resp. false) in �mP (��P):Since by (b), depenP (~Dj�; fcl1; : : : ; clpg) � m, from Lemma 4.1.18 it follows that9 ~xj ~Dj� is true (resp. false) in �mP 0(��P):Now ��P � lfp(�P 0) and �P 0 is monotone, then9 ~xj ~Dj� is true (resp. false) in �mP 0(lfp(�P 0))But since �mP 0(lfp(�P 0)) = lfp(�P 0), this contradicts the right hand side of (4.7) . 2Finally, from Theorems 4.2.4 and 4.2.6 we obtain the following result on thesafeness of the replacement operation.

4.3. Replacement vs. other operations. 55Corollary 4.2.7 (applicability conditions wrt CompL [DCAL with L �nite)In the hypothesis of 4.1.4, if for each ~C i 2 f ~C1; : : : ; ~Cng, there exists a (possiblyempty) set of variables ~xi satisfying the locality property wrt ~Ci and ~Di such that9 ~xi ~Di �=CompL(P)[DCAL 9 ~xi ~Ciand one of the following two conditions holds:1. f ~D1; : : : ; ~Dng are all independent from the clauses in fcl1; : : : ; clpg; or2. there exists an integer m such that, for each ~Ci 2 f ~C1; : : : ; ~Cng, and eachclj 2 fcl1; : : : ; clpg:- the delay of 9 ~xi ~Di wrt 9 ~xi ~Ci in lfp(�P) is less or equal to m, and- depenP (Di; clj) � m;then the simultaneous replacement operation is safe, that is, P is equivalent to P 0(wrt CompL(P) [DCAL). 24.3 Replacement vs. other operations.In this Section we consider the operations of thinning and fattening, and show howthey can be seen as particular cases of replacement. We introduce them by meansof an example of transformation sequence. This also give us the opportunity ofillustrating how the applicability conditions for the replacement operation can bechecked \by hand".For the sake of simplicity, we consider the semantics given by CompL(P) [DCAL.The results hold also in the case we adopt CompL(P) [WDCAL (and therefore alsofor Kunen's semantics) although the proofs are then more complicated.Example 4.3.1 (sorting by permutation and check, part I) The followingprogram is borrowed from [96]. The transformation process is intentionally redundantin order to be more explanatory.Let P0 be the following program:P0 = f c1 : perm([]; []):c2 : perm([A j Xs]; Y s) perm(Xs;Zs); ins(A;Zs; Y s):c3 : ins(A;Xs; [A j Xs]):c4 : ins(A; [B j Xs]; [B j Y s]) ins(A;Xs; Y s):c5 : ord([]):c6 : ord([A]):c7 : ord([A;B j Xs]) A � B; ord([B j Xs]):c8 : sort(Xs; Y s) perm(Xs; Y s); ord(Y s):: : : g(1) If we unfold perm(Xs; Y s) in the body of c8; the resulting program is:P1 = fc1; : : : ; c7g [

56 Chapter 4. Transforming Normal Logic Programs by Replacementf c9 : sort([]; []) ord([]):c10 : sort([A j Xs]; Y s) perm(Xs;Zs); ins(A;Zs; Y s); ord(Y s):g(2) By unfolding ord([]) in c9, we eliminate ord([]) from the body of that clause.P2 = fc1; : : : ; c7g [fc10g [f c11 : sort([]; []):gBy the safeness of the unfold operation (Corollary 4.7.2) P0, P1 and P2 are equivalentprograms both wrt CompL(P) [DCAL and CompL(P) [WDCAL. 2FatteningThe fatten operation consists in introducing redundant literals in the body of a clause.It is generally used in order to make possible some other transformations such asfolding.De�nition 4.3.2 (fatten) Let cl : A ~L: be a clause in a program P and ~H aconjunction of literals.� Fattening cl with ~H consists of substituting cl0 for cl, where cl0 : A ~L; ~H .fatten (P; c; ~H) def= Pnfclg [fcl0g. 2The fatten operation is a special case of replacement, and then its applicabilityconditions can be drawn directly from Corollaries 4.2.7 and 4.2.1.The next Lemma shows that for fattening, part of the applicability conditionsalways hold.Lemma 4.3.3 Let cl = A ~E; ~G: be a clause in the normal program P , ~x be a setof variables not occurring in (A, ~E) and ~H be another conjunction of literals. Then(a) If for each �, lfp(�P) j= 9 ~x ~G� implies lfp(�P) j= (9 ~x ~G; ~H)�,then 9 ~x ~G �CompL(P)[DCAL 9 ~x ~G; ~H.(b) If for each �, lfp(�P) j= :(9 ~x ~G; ~H)� implies lfp(�P) j= :9 ~x ~G�then 9 ~x ~G; ~H �CompL(P)[DCAL 9 ~x ~G.(c) If m is an integer such that, for each � and �, �"�P j= 9 ~x ~G� implies �"�+mP j=(9 ~x ~G; ~H)�, then- 9 ~x ~G �CompL(P) [DCAL 9 ~x ~G; ~H,- the delay of 9 ~x ~G; ~H wrt 9 ~x ~G in lfp(�P) is less or equal to m.If m is the least of such integers, then the delay of 9 ~x ~G; ~H wrt 9 ~x ~G in lfp(�P)is exactly m.Proof. It is a straightforward application of Theorem 2.3.5 together with the factthat if ~G� is false in some interpretation I, then also (~G; ~H)� is false in I. 2This Lemma applies as well to the semantics given by CompL(P) [WDCAL, asit is shown by Lemma 4.6.1 in the Appendix B.Example 4.3.1 (sorting by permutation and check, part II)

4.3. Replacement vs. other operations. 57(3) Now we can fatten clause c10 by adding ord(Zs) to its body.Let P3 be the resulting program:P3 = fc1; : : : ; c7g [f c11 : sort([]; []):c12 : sort([A j Xs]; Y s) perm(Xs;Zs); ord(Zs); ins(A;Zs; Y s); ord(Y s):gThis operation corresponds to a replacement of ins(A;Zs; Y s); ord(Y s) withord(Zs), ins(A;Zs; Y s), ord(Y s).We now use Theorem 4.2.6 to prove that the operation is complete.Observe that if (ins(A;Zs; Y s); ord(Y s))� is true in lfp(�P2) then Y s� is anordered list and Zs� is a sublist of Y s�; hence also Zs� is ordered and (ord(Zs); ins(A;Zs; Y s); ord(Y s))�is also true in lfp(�P2). By Lemma 4.3.3, this is su�cient to state that:ins(A;Zs; Y s); ord(Y s) �CompL(P2)[DCAL ord(Zs); ins(A;Zs; Y s); ord(Y s)3:Moreover, the conjunction ord(Zs); ins(A;Zs; Y s); ord(Y s) is independent fromclause c10, hence, by Theorem 4.2.6, the operation is CompL(P) [DCAL-complete.To show that the operation is safe we could use Corollary 4.2.7, but in this caseit is easier to observe that lfp(�P2) is also a total model4, that is, no ground atom isunde�ned in it, and therefore that lfp(�P2) � lfp(�P3) implies that lfp(�P2) = lfp(�P3).By Lemma 4.2.2 this implies that the operation is also safe.(4) We can now fatten c12 with sort(Xs;Zs). The resulting program is:P4 = fc1; : : : ; c7g [f c11 : sort([]; []):c13 : sort([A j Xs]; Y s) sort(Xs;Zs); perm(Xs;Zs); ord(Zs); ins(A;Zs; Y s); ord(Y s):gThis operation corresponds to a replacement of perm(Xs;Zs); ord(Zs) with sort(Xs;Zs),perm(Xs;Zs), ord(Zs). Using Corollary 4.2.7 we can prove that the operation is safe,in order to do it we prove that:(a) sort(Xs;Zs); perm(Xs;Zs); ord(Zs) �=CompL(P3) [DCAL perm(Xs;Zs); ord(Zs);(b) the delay of sort(Xs;Zs); perm(Xs;Zs); ord(Zs) wrt perm(Xs;Zs); ord(Zs)in lfp(�P3) is zero.To prove (a) we proceed as follows: since sort(Xs;Zs) perm(Xs;Zs); ord(Zs),is a clause of P0, by Lemma4.1.13, sort(Xs;Zs) �=CompL(P0) [DCAL perm(Xs;Zs); ord(Zs).This clearly implies that sort(Xs;Zs); perm(Xs;Zs); ord(Zs) �=CompL(P0)[DCAL3When using WDCA instead of DCA, in order to establish the equivalence, computations are ingeneral more complicated. In this Example it is su�cient to observe that (ins(A;Zs; Y s); ord(Y s))�is true in �nP2 then also ord(Zs)� is true in �nP2 .4This also follows from a result due to Apt and Bezem [5], that states that the Fitting's Modelof an acyclic program is always a total model.

58 Chapter 4. Transforming Normal Logic Programs by Replacementperm(Xs;Zs); ord(Zs). Moreover, by the safeness of the previous transformationsteps, P0 is equivalent to P3 and therefore, by a straightforward application of Lemma4.2.3, we have that also (a) holds.We now prove (b).First, let us prove a few properties. In the following we denote the length of a listl by jlj.(i) ins(A;Zs; Y s)� becomes true at step �"nP3 , where n � jY s�j. In fact n isprecisely the place where A ends up in Y s.For example: ins(a; [t; s; : : :]; [a; t; s; : : :]) is true in �"1P3 .ins(a; [t; s; : : :]; [t; a; s; : : :]) is true in �"2P3 .ins(a; [t; s; : : :]; [t; s; a; : : :]) is true in �"3P3 : : : :Moreover, when ins(A;Zs; Y s)� is true in lfp(�P3), we have thatjY s�j = jZs�j+ 1: (4.8)(ii) perm(Xs;Zs)� becomes true in �"jZs�j+1P3 .This can be proven by induction on the length of jZs�j.perm([]; []) is true in �"1P3 ;if jZs�j > 0 then perm(Xs;Zs)� is true in �"�P3 i� there exists an instance ofc2,(perm([A0jXs0]; Y s0) perm(Xs0; Zs0); ins(A0; Zs0; Y s0):)�0,such that- perm([A0jXs0]; Y s0)�0 = perm(Xs;Zs)� and- (perm(Xs0; Zs0); ins(A0; Zs0; Y s0))�0 is true in �"��1P3 .Now we can apply the inductive hypothesis and the previous results in order todetermine �� 1:- perm(Xs0; Zs0)�0 is, by the inductive hypothesis, true in �"jZs0�0 j+1P3 ;- ins(A0; Zs0; Y s0)�0 becomes true at step �"nP3 , where n � jY s0�0j.By (4.8), jY s0�0j = jZs0�0j+1, hence the conjunction (perm(Xs0; Zs0); ins(A0; Zs0; Y s0))�0becomes true exactly at step �"jY s0�0 jP3 . But jY s0�0j = jZs�j, hence perm(Xs;Zs)�becomes true at step �"jZs�j+1P3 .(iii) ord(Zs)� becomes true at step �"max(1;jZs�j)P3 .This can be proven by induction on jZs�j.(iv) sort(Xs;Zs)� becomes true at step �"jZs�j+1P3 .This can also be proven by induction on jZs�j.sort([]; []) is true in �"1P3 .When jZs�j > 0, sort(Xs;Zs)� is in �"�P3 i� there exists an instance of c12:(sort([A j Xs0]; Y s0) perm(Xs0; Zs0); ord(Zs0); ins(A;Zs0; Y s0); ord(Y s0):)�0such that- sort([A j Xs0]; Y s0)�0 = sort(Xs;Zs)� and- (perm(Xs0; Zs0); ord(Zs0); ins(A;Zs0; Y s0); ord(Y s0):)�0 is true in �"��1P3 .Now to determine the value of �� 1, we can use (i), (ii) and (iii):- perm(Xs0; Zs0)�0 is true in �"jZs0�0 j+1P3 ;

4.3. Replacement vs. other operations. 59- ord(Zs0)�0 is true in �"max(1;jZs0�0j)P3 ;- ins(A;Zs0; Y s0)�0 is true in �"nP3 , where n � jY s0�0j;- ord(Y s0)�0 is true in �"max(1;jY s0�0 j)P3 .Since jZs0�0j+1 = jY s0�0j = jZs�j, (perm(Xs0; Zs0); ord(Zs0); ins(A;Zs0; Y s0); ord(Y s0))�0becomes true exactly at step �"jY s0�jP3 and sort(Xs;Zs)� becomes true at step�"jZs�j+1P3 .We can �nally prove (b). By (iv), whenever sort(Xs;Zs)� is true in lfp(�P3), itis true in �"jZs�j+1P3 ; but by (ii) and (iii), whenever (perm(Xs;Zs); ord(Zs))� is truein lfp(�P3), it is also true in �"jZs�j+1P3 .This implies the following statement: for all �, if (perm(Xs;Zs); ord(Zs))� istrue in some �"kP3 , then also sort(Xs;Zs)� is true in �"kP3 .Clearly, this can be restated as follows: for all �, if (perm(Xs;Zs); ord(Zs))� istrue in some �"kP3 , then also (sort(Xs;Zs); perm(Xs;Zs); ord(Zs))� is true in �"kP3 .By Lemma 4.3.3 this implies (b). 2ThinningThe thinning operation is the converse of fattening, and allows one to eliminate su-peruous literals from the body of a clause.De�nition 4.3.4 (thin) Let cl : A ~L; ~H. be a clause in a program P .� Thinning cl of the literals ~H consists of substituting cl0 for cl, where cl0 : A ~L.thin(P; cl; ~H) def= Pnfclg [fcl0g. 2As for fattening, thinning can be interpreted as a replacement and then its applic-ability conditions can be inferred from Corollaries 4.2.7 and 4.2.1. Moreover Lemma4.3.3 applies in a natural way also to this operation; only statement (c) requires asymmetric formulation. We now restate only this last point.Lemma 4.3.5 Let cl = A ~E; ~G; ~H: be a clause in P and ~x be a set of variablesnot occurring in (A; ~E). The following property holds:� If m is an integer such that, for each � and �, �"�P j= :(9 ~x ~G; ~H)� implies�"�+mP j= :9 ~x ~G�, then- 9 ~x ~G; ~H �CompL(P)[DCAL 9 ~x ~G;- the delay of 9 ~x ~G wrt 9 ~x ~G; ~H in lfp(�P) is smaller or equal to m.If m is the least of such integers, then the delay of 9 ~x ~G; ~H wrt 9 ~x ~G in lfp(�P)is exactly m.Proof. It is a straightforward application of the fact that if (~G; ~H)� is true in someinterpretation I, then also ~G� is true in I. 2In the Appendix B (Lemma 4.6.2) we state a corresponding Lemma for the casein which we adopt CompL(P) [WDCAL instead of CompL(P) [DCAL.

60 Chapter 4. Transforming Normal Logic Programs by ReplacementExample 4.3.1 (sorting by permutation and check, part III)(5)We can eliminate ord(Zs) from the body of c13 by thinning it. The resultingprogram is:P5 = fc1; : : : ; c7g [f c11 : sort([]; []):c14 : sort([AjXs]; Y s) sort(Xs;Zs); perm(Xs;Zs); ins(A;Zs; Y s); ord(Y s):gThis corresponds to replacing ord(Zs); ins(A;Zs; Y s); ord(Y s) with ins(A;Zs; Y s); ord(Y s).In order to prove that the operation is CompL(P) [DCAL-complete, we apply The-orem 4.2.6.First we have to prove thatif ord(Zs)� is false in lfp(�P4) then (ins(A;Zs; Y s); ord(Y s))� is false in lfp(�P4) 5:(4.9)This is easy to prove: if ins(A;Zs; Y s)� is false in lfp(�P4) then we have the thesis.Otherwise, since lfp(�P4) is a total interpretation, ins(A;Zs; Y s)� cannot be un-de�ned in it, and ins(A;Zs; Y s)� is true in lfp(�P4), but in this case Zs� is a sublistof Y s�, hence if ord(Zs)� is false in lfp(�P4), so is ord(Y s)�; and (4.9) follows. Now(4.9) implies that whenever (ord(Zs); ins(A;Zs; Y s); ord(Y s))� is false in lfp(�P4)then also (ins(A;Zs; Y s); ord(Y s))� is false in lfp(�P4), and, by Lemma 4.3.3, thatord(Zs); ins(A;Zs; Y s); ord(Y s) �CompL(P4) [DCAL ins(A;Zs; Y s); ord(Y s):Since we also have that ins(A;Zs; Y s); ord(Y s) is independent from c13, from The-orem 4.2.6 it follows that the operation is CompL(P) [DCAL-complete.As in part (3), since lfp(�P4) is a total interpretation, lfp(�P4) � lfp(�P5) impliesthat lfp(�P4) = lfp(�P5). In other words, the completeness of the operation impliesits safeness (wrt CompL(P) [DCAL).(6) Finally we can eliminate perm(Xs;Zs) from the body of c14 by a furtherthinning, thus obtaining:P6 = fc1; : : : ; c7g [f c11 : sort([]; []):c15 : sort([AjXs]; Y s) sort(Xs;Zs); ins(A;Zs; Y s); ord(Y s):g5When adopting WDCA instead of DCA, calculations are truly more complicated. In fact inorder to ensure the equivalence, we have to show that for each j there is a k such that if ord(Zs)�is false in �"jP4 then (ins(A;Zs; Y s); ord(Y s))� is false in �"kP4 .This can be proved by the following schema: suppose that ord(Zs)� is false in lfp(�P4) and letWs� be the maximal ordered pre�x of Zs�, then ord(Zs)� becomes false at step �"jWs�jP4 . We haveto distinguish two cases:- if there is no Xs� such that Xs� is a pre�x of Y s� and ins(A;Ws;Xs)� is true in some �"nP4 , thenins(A;Zs; Y s)� becomes false no later than ord(Zs)� does, and we have the desired result.- otherwise, either Xs� is not ordered or it is the maximal ordered pre�x of Y s�; in either cases,ord(Y s)� becomes false no later than step �"jXs�jP4 .In any case if ord(Zs)� is false in �"jP4 then (ins(A;Zs; Y s); ord(Y s))� is false in �"j+1P4 .

4.4. Conclusions 61This is an O(n3) sorting program, while P0 runs in O(n!).To prove the CompL(P) [DCAL-completeness of this last step, we use Theorem4.2.6. Let us distinguish two cases.� If Xs� = [], then perm(Xs;Zs)� is false in �"1P5 i� Zs� 6= [], but in this casealso sort(Xs;Zs)� is false in �"1P5 ;� otherwise observe that the body of c2, which de�nes perm, is contained in thebody of c14, de�ning sort. This implies that if some instance of body(c2) is falsein some interpretation I, then the corresponding instance of body(c14) is falsein I. Hence, if perm([AjXs]; Zs)� is false in �P5(I) then sort([AjXs]; Zs)� isfalse in �P5(I).It follows thatif (sort(Xs;Zs); perm(Xs;Zs))� is false in �"jP5 then sort(Xs;Zs)� is false in �"jP5 .By Lemma4.3.5, this is su�cient to show that sort(Xs;Zs); perm(Xs;Zs) �CompL(P5) [DCALsort(Xs;Zs) and that the semanticdelay of sort(Xs;Zs); perm(Xs;Zs) wrt sort(Xs;Zs)is zero, and hence, by Theorem 4.2.6, the operation is CompL(P) [DCAL-complete.On the other hand, if sort(Xs;Zs)� is true in some interpretation I, then Zs�must be a reordering of Xs�, therefore perm(Xs;Zs)� is also true in I. It followsthatif sort(Xs;Zs)� is true in lfp(�P5) then also (sort(Xs;Zs); perm(Xs;Zs))� is truein lfp(�P5).By Lemma4.3.3, this implies that sort(Xs;Zs) �CompL(P5) [DCAL sort(Xs;Zs); perm(Xs;Zs),and hence, by Theorem 4.2.4, that the operation is also CompL(P) [DCAL-partiallycorrect. 24.4 ConclusionsIn this chapter we study the simultaneous replacement operation for normal logicprograms. Simultaneous replacement is a transformation operation which consistsin substituting a set of conjunctions of literals f ~C1; : : : ; ~Cng in the bodies of someclauses, with a set of equivalent conjunctions f ~D1; : : : ; ~Dng. The set of logical con-sequences of the program's completion is considered as the semantics of the normalprogram. In this way we obtain three di�erent semantics which depend on the do-main closure axioms and on the �niteness properties of the language we choose. Moreprecisely, the semantics we consider are:� CompL(P),where L is an in�nite language, this corresponds to Kunen's semantics.� CompL(P) [WDCAL,where L is a �nite language, namely it has a �nite number of function symbols,and WDCA is the set of Weak Domain Closure Axioms.� CompL(P) [DCAL,where L is a �nite language and DCA is the set of Domain Closure Axioms.

62 Chapter 4. Transforming Normal Logic Programs by ReplacementAll these semantics can be characterized by means of the Kleene sequence of the threevalued immediate consequence operator �P .For each of these semantics we de�ne and characterize formulas equivalence, pro-grams equivalence and safeness of program transformations, namely their correctnessand completeness, and express them in terms of the �P operator.Furthermore, we propose applicability conditions for simultaneous replacementwhich guarantee safeness, that is the preservation of each semantics during the trans-formation. The equivalence between ~Ci and ~Di is obviously necessary but it isgenerally not su�cient. In fact, as it is shown by Corollary 4.1.9, we also need theequivalence to hold after the transformation. Such equivalence can be destroyed whena ~Di depends on one of the clauses on which the replacement is performed. Hence weestablish a relation between the level of dependency of f ~D1; : : : ; ~Dng over the mod-i�ed clauses and the di�erence in \semantic complexity" between each ~Ci and ~Di.Such semantic complexity is measured by counting the number of the applications ofthe immediate consequence operator which are necessary in order to determine thetruth or falsity of a predicate.By considering replacement as a generalization of other transformation opera-tions such as thinning, fattening and reversible folding, we show how applicabilityconditions can be used also for them.4.5 Appendix A.Proof of Lemma 4.1.6Lemma 4.1.6 Let P be a normal program, � and � be �rst order allowed formulasand ~x = fx1; : : : ; xkg = FV(�) [FV(�). The following statements are equivalent(a) � �CompL(P) �;(b) 8n 9m 8~t �"nP j= (:)�(~t=~x) implies �"mP j= (:)�(~t=~x);where n, m are quanti�ed over natural numbers and ~t is quanti�ed over k-tuples ofL-terms.Proof. (a) implies (b)This part is by contradiction. Let us assume there exists a �xed n, such that for eachinteger m there exists a k-uple of L-terms ~tm for which the following hold(i) �"nP j= (:)�(~tm=~x);(ii) �"mP 6j= (:)�(~tm=~x).By Lemma 2.4.1 there exist two formulas T n� and F n� in the language of equality,such that FV(T n�) = FV(F n�) = FV(�) and�"nP j= 8 ~x (T n� ! � ^ F n� !:�):By Theorem 2.2.1 CompL(P) j= 8 ~x (T n� ! � ^ F n� !:�):

4.5. Appendix A. 63By (a), CompL(P) j= 8 ~x (T n� ! � ^ F n� !:�):This is an allowed formula, then by Theorem 2.2.1 there exists an r such that�"rP j= 8 ~x (T n� ! � ^ F n� !:�): (4.10)But by (i) �(~tr=~x) is either true or false in �"nP , let us now consider just the �rstpossibility, that is �"nP j= �(~tr=~x)the other case is perfectly symmetrical and omitted here.From this and the de�nition of T n� in Lemma 2.4.1, we have �"nP j= T n� (~tr=~x), andsince T n� (~tr) is a formula in the language of equality, if it is true in �"nP it must betrue already at stage 0, that is �"0P j= T n� (~tr=~x), but �"0P � �"rP , hence�"rP j= T n� (~tr=~x):But then, by (4.10), �"rP j= �(~tr=~x), contradicting (ii).(b) implies (a)We prove that for each n there exists an m such that for any allowed formula �, andfor any substitution �, �"nP j= �� implies �"mP j= �[�=�]�: (4.11)By Theorem 2.2.1 this implies (a).Fix an n, and letm be an integer that satis�es hypothesis (b). It is not restrictiveto assume that m � n. Let � be an allowed formula and � a substitution such that�"nP j= ��:If � does not contain � as a subformula then (4.11) follows immediately from theassumption that m � n. In the case that � contains � as a subformula we proceedby induction on the structure of �.Base step: � = �, then (4.11) follows immediately from (b).Induction step: we consider three cases:1) If � = 4 �1, where 4 is any allowed unary connective, or � = �1 3 �2, where3 is any allowed binary connective, then we have that either �i does not contain �as a subformula (and the result holds trivially) or the inductive hypothesis applies.2) � = 8w �1.For each L-term t, let t be the substitution [t=w]. Since �"nP j= ��, we have thatfor each L-term t;�"nP j= �1t�:By the inductive hypothesis there exists an m such thatfor each L-term t;�"mP j= �1[�=�]t�:Since the underlying universe of �"mP is the Herbrand universe on L, this implies that�"mP j= (8w �1[�=�])�:3) Finally, the case � = 9w �1(w), is treated as :8w :�1(w). 2

64 Chapter 4. Transforming Normal Logic Programs by ReplacementProof of Lemma 4.1.8Let us �rst state a simple property of existentially quanti�ed formulas.Remark 4.5.1 Let L be any language, ~w and ~z be sets of variables, ~L be a con-junction of literals, I a three valued L-interpretation and � any ground substitution.Suppose that ~w � ~z \ V ar(~L). The following properties hold:� If 9 ~z ~L� is true in I then 9 ~w ~L� is true in I.� If 9 ~z ~L� is not false in I then 9 ~w ~L� is not false in I.This is true in particular when ~z is empty and 9 ~z ~L� = ~L�. 2Lemma 4.1.8 Notation as in Theorem 4.1.7. Let I, I 0 be two partial interpretations.If I 0 � I but �P 0(I 0) 6� �P (I), then there exist a conjunction ~Cj 2 f ~C1; : : : ; ~Cng anda ground substitution � such that:� either I 0 j= 9 ~xj ~Dj� while I 6j= 9 ~xj ~Cj�;� or I 0 j= :9 ~xj ~Dj� while I 6j= :9 ~xj ~Cj�.Proof. Recall that �P 0(I 0) 6� �P (I) i� either �P 0(I 0)+ 6� �P (I)+ or �P 0(I 0)� 6��P (I)� (or both). We have to distinguish the two cases.Case 1) Let us suppose that �P 0(I 0)+ 6� �P (I)+ and let us take an atom B 2�P 0(I 0)+n�P (I)+. There has to be a clause c 2 P 0nP , a ground substitution �0 suchthat: head(c)�0 = B and body(c)�0 is true in I 0:P 0nP = fcl01; : : : ; cl0pg, then there is an integer j such that: c = cl0j and body(cl0j)�0 =(~Dj1 ; : : : ; ~Djr(j) ; ~Ej)�0: is true in I 0.Hence the conjunctions ~Dj1�0; : : : ; ~Djr(j)�0 are all true in I 0. From Remark 4.5.1 itfollows that the formulas:9 ~xj1 ~Dj1�0; : : : ;9 ~xjr(j) ~Djr(j)�0 are true in I 0; (4.12)where the ~xi are sets of variables that satisfy the locality property wrt to ~Ci and ~Di.We know that B = head(cl0j)�0 = head(clj)�0, but since B 62 �P (I)+, by de�nition2.1.6 we have that (9 ~wbody(clj))�0 is not true in I, where ~w = V ar(body(clj))nV ar(head(clj)),that is, (9 ~w ~Cj1; : : : ; ~Cjr(j) ; ~Ej)�0 is not true in I.For each k, ~w � ~xjk \ V ar(body(clj)), now let ~y = ~wn~xj1 [: : : [~xjr(j) and � be aground extension of �0 whose domain contains ~y. Then from Remark 4.5.1 it followsthat (9 ~xj1 ; : : : ; ~xjr(j) ~Cj1; : : : ; ~Cjr(j) ; ~Ej)� is not true in I:Since ~Ej� is true in I 0 and I 0 � I, then ~Ej� is true in I, by the locality property, thesets ~xjk are pairwise disjoint, hence one of the formulas in 9 ~xj1 ~Cj1�; : : : ;9 ~xjr(j) ~Cjr(j)�is not true in I.Since (4.12) holds also for �, the thesis follows.Case 2) It is perfectly symmetrical to case 1) except for the fact that it is provenby contradiction. Let us suppose that �P 0(I 0)� 6� �P (I)�, and let us take an atomB 2 �P 0(I 0)�n�P (I)�. There has to be a clause c 2 PnP 0, a ground substitution �0such that head(c)�0 = B and body(c)�0 is not false in I:

4.5. Appendix A. 65PnP 0 = fcl1; : : : ; clpg, then there is an integer j such that: c = clj, and then theconjunction (~Cj1 ; : : : ; ~Cjr(j) ; ~Ej)�0 is not false in I.Hence the conjunctions ~Cj1�0; : : : ; ~Cjr(j)�0 are all not false in I. From Remark 4.5.1it follows that: 9 ~xj1 ~Cj1�0; : : : ;9 ~xjr(j) ~Cjr(j)�0 are not false in I: (4.13)We know that B = head(clj)�0 = head(cl0j)�0, but since B 2 �P 0(I 0)�, by de�nition2.1.6 we have that (9 ~wbody(cl0j))�0 is false in I 0, with ~w = V ar(body(cl0j))nV ar(head(cl0j)),that is, (9 ~w ~Dj1; : : : ; ~Djr(j) ; ~Ej)�0 is false in I 0. For each k, ~w � ~xjk \ V ar(body(clj)),now let ~y = ~wn~xj1 [: : : [~xjr(j) and � be a ground extension of �0 whose domaincontains ~y. From Remark 4.5.1 it follows that(9 ~xj1; : : : ; ~xjr(j) ~Dj1 ; : : : ; ~Djr(j) ; ~Ej)� is false in I 0:Since ~Ej� is not false in I and I 0 � I, ~Ej� is not false in I 0. By the locality property,the sets ~xjk are pairwise disjoint, then one of the formulas in 9 ~xj1 ~Dj1� � � � 9 ~xjr(j) ~Djr(j)�is false in I 0.Since (4.13) holds also for �, the thesis follows. 2Proof of Lemma 4.2.3Lemma 4.2.3 Let �, � be �rst order allowed formulas and P be a normal program.The following statements are equivalent:(a) � �CompL(P) [DCAL �;(b) lfp(�P) j= �) �:Proof.(a) implies (b).By the de�nition of the operator) , (b) is equivalent tofor each tuple of L-terms ~t, lfp(�P) j= (:)�(~t=~x) implies lfp(�P 0) j= (:)�(~t=~x).By Theorem 2.3.5 this is equivalent tofor each tuple of L-terms ~t, CompL(P) [DCAL j= (:)�(~t=~x) impliesCompL(P) [DCAL j=(:)�(~t=~x).This is immediate by De�nition 4.1.2.(b) implies (a).Let � be any allowed formula such that CompL(P) [DCAL j= �, � be any groundsubstitution; we have to prove that CompL(P) [DCAL j= �[��=��].If � does not contain �� as a subformula then the result holds trivially, so let ussuppose that � contains �� as a subformula. The proof proceeds by induction on thestructure of �.Base step: � � ��. By Theorem 2.3.5, CompL(P) [DCAL j= �� implies thatlfp(�P) j= ��.By (b) this implies that lfp(�P) j= ��, and, by Theorem 2.3.5, that CompL(P) [DCAL j=��.Since �� � �[��=��], this implies the thesis.

66 Chapter 4. Transforming Normal Logic Programs by ReplacementInduction step: we have to consider four cases:1) � � 4 �1, where 4 is any allowed unary connective. The result holdstrivially, since by the inductive hypothesis, CompL(P) [DCAL j= (:)�1 impliesCompL(P) [DCAL j= (:)�1[��=��].2) � � �1 3 �2, where 3 is any allowed binary connective. For i 2 f1; 2g, either�i does not contain an instance of � as a subformula, in which case the result holdstrivially, or the inductive hypothesis applies to �i.3) � � 8w �1(w).Suppose that CompL(P) [DCAL j= 8w �1(w):This is equivalent to: for any L-term t, CompL(P) [DCAL j= �1(t):For each L-term t, let t be the substitution (t=w), by the inductive hypothesis, wehave that for any L-term t, CompL(P) [DCAL j= �1(t)[��t=��t]:Since DCAL forces the quanti�cation to be over L-terms, and DCAL is included inCompL(P) [DCAL, this implies that CompL(P) [DCAL j= 8w �1(w)[��=��]:On the other hand, for the case when CompL(P) [DCAL j= :8w �1(w), a similarreasoning applies.4) � � 9w �1(w)This falls into the previous case, since 9w �1(w) � :8w :�1(w). 24.6 Appendix BNow we state two Lemmata which are the counterpart of Lemmata 4.3.3 and 4.3.5,for the case in which the closure axioms adopted are WDCAL rather than DCAL.Lemma 4.6.1 Let cl = A ~E; ~G: be a clause in the normal program P , ~x be a setof variables not occurring in (A, ~E) and ~H be another conjunction of literals. Then(a) If for each j there exists a k such that, for each �, �"jP j= 9 ~x ~G� implies�"kP j= (9 ~x ~G; ~H)�, then 9 ~x ~G �CompL(P) 9 ~x ~G; ~H.(b) If for each j there exists a k such that, for each �, �"jP j= :(9 ~x ~G; ~H)� implies�"kP j= :9 ~x ~G�, then 9 ~x ~G; ~H �CompL(P) 9 ~x ~G.(c) If m is an integer such that, for each n and �, �"nP j=L 9 ~x ~G� implies �"n+mP j=L(9 ~x ~G; ~H)� then- 9 ~x ~G �CompL(P) 9 ~x ~G; ~H;- the delay of 9 ~x ~G; ~H wrt 9 ~x ~G in CompL(P) [WDCAL is smaller or equalto m.If m is the least of such integers, then the delay of 9 ~x ~G; ~H wrt 9 ~x ~G inCompL(P) [WDCAL is exactly m.Proof. It is a straightforward application of Theorem 2.3.3 together with the factthat, if ~G� is false in some interpretation I, then also (~G; ~H)� is false in I. 2Lemma 4.6.2 Let cl = A ~E; ~G; ~H: be a clause in P and ~x be a set of variablesnot occurring in A, ~E. The following property holds:

4.7. Appendix C (Safeness of the Unfolding Operation) 67� If m is an integer such that, for each integer n and substitution �, 9 ~x (~G; ~H)�false in �"nP implies 9 ~x ~G� false in �"n+mP , then- 9 ~x ~G; ~H �CompL(P) 9 ~x ~G;- the delay of 9 ~x ~G wrt 9 ~x ~G; ~H in �"!P is less or equal to m.If m is the least of such integers, then the delay of 9 ~x ~G; ~H wrt 9 ~x ~G in �"!P isexactly m.Proof. It is a straightforward application of the fact that if (~G; ~H)� is true in someinterpretation I, then also ~G� is true in I. 24.7 Appendix C (Safeness of the Unfolding Opera-tion)First we need the following technical Lemma.Lemma 4.7.1 Let P 0 be the program obtained by unfolding an atom in a clause ofprogram P . Then for each integer i and limit ordinal �,(a) �"iP � �"iP 0 and �"iP 0 � �"2iP ;(b) �"iP (�"�P) � �"iP 0(�"�P 0) and �"iP 0(�"�P 0) � �"2iP (�"�P):Proof. Here we adopt the same notation of de�nition 3.2.3, so cl : A H; ~K: is theclause of P to which we apply the unfold operation, fH1 ~B1:; : : : ;Hn ~Bn:g arethe clauses of P whose heads unify with H, fcl01; : : : ; cl0ng are the resulting clauses,where, for each i, cl0i : (A ~Bi; ~K)�i. and �i = mgu(H;Hi). We also suppose thatall this clauses are disjoint.The next Claim is crucialClaim 4.1 Suppose that � is an ordinal such that, for each ground � ,(i) �"�P = �"�P 0 ;(ii) if H� 2 �"�P + then there exist a substitution � and an integer i such thatH� = Hi�i� and ~Bi�i� is true in �"�P ;(iii) if H� 2 �"�P � then for each substitution � and integer i if H� = Hi�i� then~Bi�i� is false in �"�P .Then, for each integer j,� �"jP (�"�P) � �"jP 0(�"�P 0);� �"jP 0(�"�P 0) � �"2jP (�"�P).Proof. First we prove the �rst statement, and we show by induction that if a groundatom R is true or false in �"jP (�"�P) then it is also so in �"jP 0(�"�P 0).The base case j = 0 is trivial, since �"0P (�"�P) = �"�P , and from (i) we have the thesis.Induction step, j > 0; we have to distinguish two cases:1) Suppose R is true in �"jP (�"�P); then there exists a clause d 2 P and a substi-tution � such that R = head(d)� and body(d)� is true in �"j�1P (�"�P).If d 6= cl then d belongs both to P and P 0, by the inductive hypothesis body(d)� istrue in �"j�1P 0 (�"�P 0), and the result follows.

68 Chapter 4. Transforming Normal Logic Programs by ReplacementOtherwise, d = cl, R = A� and (H; ~K)� is true in �"j�1P (�"�P). So H� is true in�"j�1P (�"�P).If j > 1 this implies that for some integer i and substitution �, H� = H�i� = Hi�i�and ~Bi�i� is true in �"j�2P (�"�P).On the other hand, if j = 1 the fact that H� is true in �"�P implies, by (ii), that forsome integer i and some substitution �, ~Bi�i� is true in �"�P .In any case, (~Bi; ~K)�i� is true in �"j�1P (�"�P) and, by inductivehypothesis, in �"j�1P 0 (�"�P 0).Then body(cl0i)� is true in �"j�1P 0 (�"�P 0), it follows that, head(cl0i)� is true in �"jP 0(�"�P 0).We can assume that �jV ar(d) = �i�jV ar(d), and hence that A� = A�i�.As R = A� = A�i� = head(cl0i)�, the result follows.2) Suppose that R is false in �"jP (�"�P), we prove this part by contradiction.Weassume that R is not false in �"jP 0(�"�P 0); then there exists a clause d0 2 P 0 and asubstitution � such that R = head(d0)� and body(d0)� is not false in �"j�1P 0 (�"�P 0).If d0 62 fcl01; : : : ; cl0ng, then d0 belongs both to P 0 and P , by the inductive hypothesisbody(d0)� is not false in �"j�1P (�"�P), and R = head(d0)� is not false in �"jP (�"�P),which is a contradiction.Otherwise, for some integer i and substitution �, d0 = cl0i, R = head(cl0i)� = A�i�,and body(cl0i)� is not false in �"j�1P 0 (�"�P 0). Recall that body(cl0i)� = (~Bi; ~K)�i�.If j > 1, the fact that ~Bi�i� is not false in �"j�1P 0 (�"�P 0) implies that ~Bi�i� is not falsein �"j�2P 0 (�"�P 0), and since Hi ~Bi: is a clause of P 0, H�i� = Hi�i� is not false in�"j�1P 0 (�"�P 0).On the other hand, if j = 1, the fact that ~Bi�i� is not false in �"�P 0 implies by (ii) thatH�i� is not false in �"�P 0 .In any case (H; ~K)�i� is not false in �"j�1P 0 (�"�P 0), and by the inductive hypothesis, in�"j�1P (�"�P). Since H; ~K = body(cl) it follows that R = A�i� = head(cl)�i� is notfalse in �"jP (�"�P), which gives a contradiction.Now we prove the second statement: we show by induction that if a ground atomR is true or false in �"jP 0(�"�P 0) then it is also so in �"2jP (�"�P).As above, the base case j = 0 is trivial.Induction step j > 0: we have to distinguish two cases.1) Suppose that R is true in �"jP 0(�"�P 0), then there exists a clause d0 2 P 0 and asubstitution � such that R = head(d0)� and body(d0)� is true in �"j�1P 0 (�"�P 0).If d0 62 fcl01; : : : ; cl0ng then d0 belongs both to P 0 and P , by the inductive hypothesisbody(d0)� is true in �"j�1P (�"�P), R = head(d0)� is true in �"jP (�"�P) and the resultfollows.Otherwise for some integer i and substitution �, d0 = cl0i, R = head(cl0i)� = A�i�,and body(cl0i)� is true in �"j�1P 0 (�"�P 0).Recall that body(cl0i)� = (~Bi; ~K)�i�; by inductive hypothesis, (~Bi; ~K)�i� is also truein �"2j�2P (�"�P).Since ~Bi�i� is true in �"2j�2P (�"�P) and Hi ~Bi: is a clause of P , Hi�i� is true in�"2j�1P (�"�P). But Hi�i� = H�i�, so (H; ~K)�i� = body(cl)�i� is true in �"2j�1P (�"�P),hence R = A�i� = head(cl)�i� is true in �"2jP (�"�P).2) Let R be false in �"jP 0(�"�P 0); we prove this part by contradiction, so we assumethat R is not false in �"2jP (�"�P). Then there exists a clause d 2 P and a substitution

4.7. Appendix C (Safeness of the Unfolding Operation) 69� such that R = head(d)� and body(d)� is not false in �"2j�1P (�"�P).If d 6= cl then d belongs both to P and P 0, by the monotonicity of the Kleene sequence,body(d)� is not false in �"2j�2P (�"�P) either, hence, by the inductive hypothesis body(d)�is not false in �"j�1P 0 (�"�P 0). It follows that head(d)� = R is not false in �"jP 0(�"�P 0) whichgives a contradiction.Otherwise, d = cl, R = A� and (H; ~K)� is not false in �"2j�1P (�"�P). So H� isnot false in �"2j�1P (�"�P). This implies that for some integer i and substitution �,H� = H�i� = Hi�i� and ~Bi�i� is not false in �"2j�2P (�"�P).Hence (~Bi; ~K)�i� is not false in �"2j�2P (�"�P), and by the inductive hypothesis, in�"j�1P 0 (�"�P 0). Since ~Bi�i� = body(cl0i)�, this implies that head(cl0i)� = A�i� = R isnot false in �"jP 0(�"�P 0) which is a contradiction. 2Now, in order to prove (a) we observe that � = 0 is an ordinal that triviallysatis�es the hypothesis of Claim 4.1.In order to prove (b) we have to show that Claim 4.1 also applies when � is anylimit ordinal.First consider the case � = !. From (a) it follows that �"!P = �"!P 0 , moreover, if H�is true (resp. false) in �"!P , then, it is also true in some �"mP , (m < !). By applyingthe de�nition of Fitting's operator we have that condition (ii) (resp. (iii)) hold for� = !. So � = ! satis�es the requirements of Claim 4.1.It follows that, for each i, �"!+iP � �"!+iP 0 and that �"!+iP 0 � �"!+2iP . By the samereasoning it turns out that the ordinal 2!, and iterating, all the other limit ordinals,satisfy the requirements of Claim 4.1. 2This brings us to the desired conclusions.Corollary 4.7.2 (safeness of the unfolding operation) Let P 0 be the result ofunfolding an atom of a clause in P. Then P is equivalent to P 0 wrt all three thesemantics considered in this paper.Proof. By Lemmata 4.7.1, 4.2.2 and Theorems 2.3.3 and 2.2.3. 2

Chapter 5 Preservation of Fitting'sSemantics in Unfold/Fold Transformations ofNormal Programs
The unfold/fold transformation system de�ned by Tamaki and Sato was meant forde�nite programs. It transforms a program into an equivalent one in the sense ofboth the least Herbrand model semantics and the Computed Answer Substitutionsemantics. Seki extended the method to normal programs and specialized it in orderto preserve also the �nite failure set. The resulting system is correct wrt nearlyall the declarative semantics for normal programs. An exception is Fitting's modelsemantics. In this chapter we consider a slight variation of Seki's method and westudy its correctness wrt Fitting's semantics. We de�ne an applicability conditionfor the fold operation and we show that it ensures the preservation of the consideredsemantics through the transformation.5.1 IntroductionThe unfold/fold transformation rules were introduced by Burstall and Darlington[25] for transforming clear, simple functional programs into equivalent, more e�cientones. The rules were early adapted to the �eld of logic programs both for programsynthesis [30, 50] and for program specialization and optimization [1, 60]. Soon later,Tamaki and Sato [96] proposed an elegant framework for the transformation of logicprograms based on unfold/fold rules.The major requirement of a transformation system is its correctness: it shouldtransform a program into an equivalent one. Tamaki and Sato's system was originallydesigned for de�nite programs and in this context a natural equivalence on programsis the one induced by the least Herbrand model semantics. In [96] it was shownthat the system preserves such a semantics. Afterward, the system was proven to becorrect wrt many other semantics: the computed answer substitution semantics [58],the Perfect model semantics [91], the Well-Founded semantics [92] and the Stablemodel semantics [90, 12]. 71

72 Chapter 5. Preservation of Fitting's Semantics : : :In [91], Seki modi�ed the method by restricting its applicability conditions. Thesystem so de�ned enjoys all the semantic properties of Tamaki-Sato's, moreover, itpreserves the �nite failure set of the original program [89] and it is correct wrt Kunen'ssemantics [88].However, neither Tamaki-Sato's, nor Seki's system preserve the Fitting modelsemantics.In this chapter we consider a transformation schema which is similar yet slightlymore restrictive to the one introduced by Seki [91] for normal programs and reportedin de�nition 3.2.8. We study the e�ect of the transformation on the Fitting's semantics[41] and we individuate a su�cient condition for its preservation.The di�erence between the method we propose and the one of Seki consists in thefact that here the operations have to be performed in a precise order. We believethat this order corresponds to the \natural" order in which the operations are usuallycarried out within a transformation sequence, and therefore that the restriction weimpose is actually rather mild.The structure of this chapter is the following. In Section 5.2 the transformationschema is de�ned and exempli�ed, and the applicability conditions for the fold oper-ation are presented and discussed. Finally, in Section 5.3, we prove the correctnessof the unfold/fold transformation wrt Fitting's semantics. For the notation and thepreliminaries on Fitting's semantics we refer to section 2.3.2.5.2 A four step transformation schemaIn this section we introduce the unfold/fold transformation schema. All de�nitionsare given modulo reordering of the bodies of the clauses and standardization apart isalways assumed.Let P be a normal program. A four step transformation schema starting in theprogram P consists of the following steps:Step 1. Introduction of new de�nitionsWe add to the program P the set of clauses Ddef = fci : Hi ~Big, where thepredicate symbol of each Hi is new, that is, it does not occur in P . On the otherhand, we require that the predicate symbols found in each ~Bi are de�ned in P , andtherefore are not new. The result of this operation is then� P1 = P [Ddef 2Example 5.2.1 (min-max, part 1) Let P be the following program

5.2. A four step transformation schema 73P = f min([X];X):min([XjXs]; Y) min(Xs;Z); inf(X;Z; Y):max([X];X):max([XjXs]; Y) max(Xs;Z); sup(X;Z; Y):inf(X;Y;X) X � Y:inf(X;Y; Y) :(X � Y):sup(X;Y; Y) X � Y:sup(X;Y;X) :(X � Y):c1 : med(Xs;Med) min(Xs;Min);max(Xs;Max);Med is (Min+Max)=2: ghere med(Xs;Med) reports in Med the average between the minimum and the max-imum of the values in the list Xs.We may notice that the de�nition of med(Xs;Med) traverses the list Xs twice.This is obviously a source of ine�ciency. In order to �x this problem via an un-fold/fold transformation, we �rst have to introduce a new predicate minmax. Let usthen add to program P the following new de�nition:Ddef = fc2 : minmax(Xs;Min;Max) min(Xs;Min);max(Xs;Max): g 2Step 2. Unfolding in DdefWe transform Ddef into Dunf by unfolding some of its clauses. The clauses of P aretherefore used as unfolding clauses. This process can be iterated several times andusually ends when all the clauses that we want to fold have been obtained; the resultof this operation is� P2 = P [Dunf 2Example 5.2.1 (min-max, part 2). We can now unfold the atom min(Xs;Min)in the body of c2, the result isc3 : minmax([X];X;Max) max([X];Max):c4 : minmax([XjXs];Min;Max) min(Xs; Y);inf(X;Y;Min);max([XjXs];Max):In the bodies of both clauses we can then unfold predicate max. Each clause gener-ates two clauses.

74 Chapter 5. Preservation of Fitting's Semantics : : :c5 : minmax([X];X;X):c6 : minmax([X];X;Max) max([]; Z); sup(Z;X;Max):c7 : minmax([X];Min;X) min([]; Y); inf(X;Y;Min):c8 : minmax([XjXs];Min;Max) min(Xs; Y);inf(X;Y;Min);max(Xs;Z);sup(X;Z;Max):Clauses c6 and c7 can then be eliminated by unfolding respectively the atomsmax([]; Z)and min([]; Y). Dunf consists then of the following clauses.c5 : minmax([X];X;X):c8 : minmax([XjXs];Min;Max) min(Xs; Y);inf(X;Y;Min);max(Xs;Z);sup(X;Z;Max):Still, minmax traverses the list Xs twice; but now we can apply a recursive foldingoperation. 2Step 3. Recursive foldingLet ci : Hi ~Bi be one of the clauses of Ddef , which was introduced in Step 1, andcl : A ~B0; ~S: be (a renaming of) a clause in Dunf. If there exists a substitution �,Dom(�) = V ar(ci) such that(a) ~B0 = ~Bi�;(b) � does not bind the local variables of ci, that is for any x; y 2 V ar(~Bi)nV ar(~Hi)the following three conditions hold� x� is a variable;� x� does not appear in A, ~S, Hi�;� if x 6= y then x� 6= y�;(c) ci is the only clause of Ddef whose head uni�es with Hi�;(d) all the literals of ~B0 are the result of a previous unfolding.then we can fold Hi� in cl, obtaining cl0 : A Hi�; ~S: This operation can be per-formed on several conjunctions simultaneously, even on the same clause. The resultis that Dunf is transformed into Dfold and hence� P3 = P [Dfold 2Example 5.2.1 (min-max, part 3). We can now fold min(Xs; Y);max(Xs;Z)in the body of c8. The resulting program Dfold consists of the following clausesc5 : minmax([X];X;X):c9 : minmax([XjXs];Min;Max) minmax(Xs; Y; Z);inf(X;Y;Min);sup(X;Z;Max):

5.2. A four step transformation schema 75minmax(Xs;Min;Max) has now a recursive de�nition and needs to traverse the listXs only once. In order to let the de�nition of med enjoy of this improvement, weneed to propagate predicate minmax inside its body. 2Step 4. Propagation foldingTechnically, the di�erence between this step and the previous one is that now thefolded clause comes form the original program P . This allows us to drop condition(d) of the folding operation.Let ci : Hi ~Bi be one of the clauses of Ddef , which was introduced in Step 1,and cl : A ~B0; ~S: be (a renaming of) a clause in the original program P . If thereexists a substitution �, Dom(�) = V ar(ci) such that the conditions (a), (b) and (c)de�ned above are satis�ed, then we can fold Hi� in cl, obtaining cl0 : A Hi�; ~S:Also this operation can be performed on several conjunctions simultaneously, evenon the same clause. The result is that P is transformed into Pfold and therefore� P4 = Pfold [Dfold 2Example 5.2.1 (min-max, part 4). We can now fold min(Xs; Y);max(Xs;Z)in the body of c1, in the original program P . The resulting program isPfold = Pnfc1g [fc10 : med(Xs) minmax(Xs;Min;Max);Med is (Min+Max)=2: gAnd then the �nal program is P4 = Pfold [Dfold == f c5 : minmax([X];X;X):c9 : minmax([XjXs];Min;Max) minmax(Xs; Y; Z);inf(X;Y;Min);sup(X;Z;Max):c10 : med(Xs) minmax(Xs;Min;Max);Med is (Min+Max)=2:+ de�nitions for predicates min;max; inf and sup:gNotice also that predicates min and max are no longer used by the program. 2Semantic considerationsThe schema (that is, the method we propose) is similar but more restrictive than thetransformation sequence with modi�ed folding1 proposed by Seki [91]. The (only)limitation consists in the fact that the schema requires the operations to be performedin �xed order: for instance it does not allow a propagation folding to take place beforea recursive folding. We believe that in practice this is not a bothering restriction, as itcorresponds to the \natural" procedure that is followed in the process of transforming1here we are adopting Seki's notation, and we call modi�ed folding the one presented in [89, 91],which preserves the �nite failure set, as opposed to the one introduced by Tamaki and Sato in [96],which does not.

76 Chapter 5. Preservation of Fitting's Semantics : : :a program. In fact, in all the papers we cite, all the examples that can be reduced toa transformation sequence as in [91], can also be reduced to the given transformationschema.Since the schema can be seen as a particular case of the transformation sequence,it enjoys all its properties, among them, it preserves the following semantics of theinitial program: the success set [96], the computed answer substitution set [58], the�nite failure set [91], the Perfect model semantics for strati�ed programs [91], theWell-Founded semantics [92], the Stable model semantics [90, 12].However, as it is, the schema su�ers of the same problems of the sequence, i.e.,Fitting's Models is not preserved. This is shown by the following example.Example 5.2.2 Let P1 = P [Ddef , where P and Ddef are the following programsDdef = f p q(X): gP = f q(s(X)) q(X); t(0):t(0): gAs we �x a language L that contains the constant 0 and the function s=1, we havethat 9X q(X) is false in Fit(P1), consequently, p is also false in Fit(P1). Now let usunfold q(X) in the body of the clause in Ddef ; the resulting program is the following.P2 = P [Dunf, whereDunf = f p q(Y); t(0): gP = f q(s(X)) q(X); t(0):t(0): gWe can now fold q(Y) in the body of the clause of Dunf, the resulting program isP3 = P [Dfold, whereDfold = f p p; t(0): gP = f q(s(X)) q(X); t(0):t(0): gNow we have that p is unde�ned in the Fitting model of P3. 2So, in order for the transformation to preserve Fitting's model of the originalprogram, we need some further applicability conditions. Therefore the following.Theorem 5.2.3 (Correctness) Let P1; : : : ; P4 be a sequence of programs obtainedapplying the transformation schema to program P . Let also Ddef = fHi ~Big bethe set of clauses introduced in Step 1, and, for each i, ~wi be the set of local variablesof ci: ~wi = V ar(~Bi)nV ar(Hi). If each ci in Ddef satis�es the following condition:A each time that 9 ~wi ~Bi� is false in some �"�P1 , then there exists a non-limit ordinal� � � such that 9 ~wi ~Bi� is false in �"�P1Then Fit(P1) = Fit(P2) = Fit(P3) = Fit(P4).Proof. The proof is given in the subsequent Section 5.3. 2

5.2. A four step transformation schema 77On condition ACondition A is in general undecidable, it is therefore important to provide someother decidable su�cient conditions. For this, in the rest of this Section, we adoptthe following notation:- Ddef = fci : Hi ~Big is the set of clauses introduced in Step 1,and, for each i,- ~wi = V ar(~Bi)nV ar(Hi) is the set of local variables of ci.First, it is easy to check that if ci has no local variables, then it satis�es A.Proposition 5.2.4 If ~wi = ; then ci satis�es A.Proof. It follows at once from the de�nition of Fitting's operator. 2This condition, though simple, is met by most of the examples found in the liter-ature; if we are allowed an informal \statistics", of all the papers cited in our bibli-ography, seven contain practical examples in clausal form which can be assimilatedto our method ([21, 58, 78, 89, 91, 92, 96]), and of them, only two contain exampleswhere the \introduced" clause contains local variables ([58, 78]). Our Example 5.2.1satis�es the condition as well.Nevertheless Proposition 5.2.4 can easily be improved. First let us consider thefollowing Example2.Example 5.2.5 Let P1 = P [Ddef , where P and Ddef are the following programsDdef = f c0 : br(X;Y) reach(X;Z); reach(Y;Z): gP = f reach(X;Y) arc(X;Y):reach(X;Y) arc(X;Z); reach(Z; Y): g [DBWhere DB is any set of ground unit clauses de�ning predicate arc. reach(X;Y) holdsi� there exists a path starting from node X and ending in node Y , while br(X;Y)holds i� there exists a node Z which is reachable both from node X and node Y . 2In this Example the de�nition of predicate br can be specialized and made recurs-ive via an unfold/fold transformation. Despite the fact that clause c0 contains thelocal variable Z, it is easy to see that A is satis�ed. This is due to the fact that P isactually a DATALOG (function-free) program.We now show that if (a part of) the original program P is function-free (orrecursion-free) then A is always satis�ed.Let us �rst introduce the following notation. Let p, q be predicates, we say thatp refers to q in program P if there is a clause of P with p in its head and q in itsbody. The depends on relation is the reexive and transitive closure of refers to.Let ~L be a conjunction of literals, by P j~L we denote the set of clauses of P thatde�ne the predicates which the predicates in ~L depend on. We say that a program isrecursion-free if there is no chain p1; : : : ; pk of predicate symbols such that pi refers2The example is actually a modi�cation of Example 2.1.1 in [89]

78 Chapter 5. Preservation of Fitting's Semantics : : :to pi+1 and pk = p1. With an abuse of notation, we also call a program function-freeif the only terms occurring in it are either ground or variables.We can now state the following.Proposition 5.2.6 For each index i, and each w 2 ~wi, let us denote by ~Lw thesubset of ~Bi formed by those literals where w occurs. If for every ~Lw, one of thefollowing two conditions holds:(a) P1j~Lw is recursion-free, or(b) P1j~Lw is function-free;then each ci satis�es A.Proof. First we need the following Observation.Observation 5.2.7 Let Q be a function-free or a recursion-free program, then for someinteger k, Fit(Q) = �"kQProof. Straightforward 2Now �x an index i, and let ~wi = w1; : : : ; wm, and let ~M be the subset of ~Bi consistingof those literals that do not contain any of the variables in ~wi. It is immediate that,for any ordinal �, and for any substitution ��"�P1 j= 9 ~wi ~Bi� i� �"�P1 j= 9w1 ~Lw1� ^ : : : ^ 9wm ~Lwm� ^ ~M� (5.1)Now suppose that, for some ordinal �, and substitution �, 9 ~wi ~Bi� is false in �"�P1 .By (5.1), either (i) ~M� is false in �"�P1 , or (ii) there exists an i such that 9wi ~Lwi� isfalse in �"�P1 ; we treat the two cases separately.(i), ~M� is false in �"�P1 , then, by the de�nition of �P1 , there exists a non-limitordinal � � � such that ~M� is false in �"�P1 , and, by (5.1), 9 ~wi ~Bi� is false in �"�P1.(ii), 9wi ~Lwi� is false in �"�P1 , since P1j~Lwi is function or recursion-free, by Ob-servation 5.2.7 there exists an integer k such that 9wi ~Lwi� is false in �"kP1 ; again, by(5.1), 9 ~wi ~Bi� is false in �"kP1.So, in any case, there exists a non-limit ordinal � � � such that 9 ~wi ~Bi� is falsein �"�P1 . Since this holds for any index i, the thesis follows. 2Checking A \a posteriori"We now show that condition A holds in P0 i� it holds in any program of the unfoldpart of the transformation sequence. This gives us the opportunity of providingfurther su�cient conditions.First let us restate A as follows:A': For each substitution � and non-limit ordinal �, if Hi� is false in �"�+1P1 , thenHi� is false in �"�P1 as well.

5.3. Correctness of the transformation 79Now, let P 01 be a program which is obtained from P1 by applying some unfoldingtransformation. It is easy to see3 that Hi satis�es A' in P1 i� Hi satis�es A' in P 01.So the advantage of A' over A is that it can be checked a posteriori at any timeduring the unfolding part of the transformation. So Proposition 5.2.6 can be restatedas follows.Proposition 5.2.8 Let P 01 be a program obtained from P1 by (repeatedly) applyingthe unfolding operation. Let D0def be the subset of P 0 corresponding to Ddef in P . Iffor each clause c of D0def , and for every variable y, local to the body of c� P 01j~Ly is recursion-free or function-free,where ~Ly denotes the subset of the body of c consisting of those literals wherey occurs;then each ci satis�es A in P1.Proof. It is a straightforward generalization of the proof of Proposition 5.2.6. 25.3 Correctness of the transformationThe aim of this section is to prove the correctness of the transformation schema wrtFitting's semantics, Theorem 5.2.3.Correctness of the unfold operationFirst we consider the unfold operation.Corollary 5.3.1 (Correctness of the unfold operation) Let P 0 be the result ofunfolding an atom of a clause in P . Then� Fit(P) = Fit(P 0)Proof. This is a subcase of Corollary 4.7.2, and the proof follows directly fromLemma 4.7.1. 2It should be mentioned that, because of the particular structure of the transforma-tion sequence, here we never use self-unfoldings (that is, unfoldings in which the sameclause is both the unfolded clause and one of the unfolding ones). Consequently thecorrectness of Step 2 follows also from a result of Gardner and Shepherdson [47, The-orem 4.1] which states that if the program P 0 is obtained from P by unfolding (butnot self-unfolding), then Comp(P) and Comp(P 0) are logically equivalent theories4.The following is a second, technical result on the consequences of an unfoldingoperation which will be needed in the sequel.3This is a direct consequence of Lemma 4.7.14In [47] this result is stated for the usual two-valued program's completion. By looking at theproof it is straightforward to check that it holds also for the three-valued case

80 Chapter 5. Preservation of Fitting's Semantics : : :Lemma 5.3.2 Let P be a normal program, cl : A ~K: be a de�nite, clause of P .Suppose also that cl is the only clause of P whose head uni�es with A�. If P 0 isthe program obtained by unfolding at least once all the atoms in ~K, then, for eachnon-limit ordinal �� if A� is true (resp. false) in �"�+1P then A� is true (resp. false) in �"�P 0Proof. Let us �rst give a simpli�ed proof by considering the case when ~K consistsof two atoms H;J and we perform a single unfolding on them; we will later considerthe general case.Let fH1 ~B1:; : : : ; Hn ~Bn:g be the set of clauses of P whose head unify withH via mgu's �1; : : : ; �n, and let fJ1 ~C1:; : : : ; Jm ~Cmg be the set of clauses ofP whose head unify with J . Unfolding H in cl and then J in the resulting clauses,will lead to the following program:P 0 = Pnfclg [fdi;j : (A ~Bi; ~Cj:)�i;j)gWhere �i;j = mgu(J�i; Jj). Here some of the clauses di;j may be missing due to thefact that J�i and Jj may not unify, but this is of no relevance in the proof.Note that the clauses di;j are the only clauses of P 0 whose head could possiblyunify with A.Let ~y = V ar(H;J)nV ar(A) be the set of variables local to the body. We have toconsider two cases.a)A� is true in �"�+1P . By the de�nition of �P , (9~y H; J)� is true in �"�P . There hasto be an extension � of �, Dom(�) = Dom(�) [~y = V ar(A;H; J) such that (H;J)�is true in �"�P . Let Hi ~Bi and Jj ~Cj be the clauses used to prove, respectively,H� and J�. Hence there exists a � such that �i;j� jDom(�) = �, H� = Hi�i;j� ,J� = Jj�i;j� , and (~Bi; ~Cj)�i;j� is true in �"��1P . By Lemma 4.7.1, �"��1P � �"��1P 0 ,hence (~Bi; ~Cj)�i;j� is true in �"��1P 0 . It follows that A�i;j� = A� = A� is true in �"�P 0 .b) A� is false in �"�+1P . By the de�nition of �P , (9~y H; J)� is false in �"�P . Hencefor all extensions � of �, such that Dom(�) = Dom(�) [~y = V ar(A;H; J), we havethat (H;J)� is false in �"�P .Hence for all such �'s, and for all i; j and � such that �i;j� jDom(�) = �, H� =Hi�i;j� , J� = Jj�i;j� , we have that (~Bi; ~Cj)�i;j� is false in �"��1P . By Lemma 4.7.1,�"��1P � �"��1P 0 , hence (~Bi; ~Cj)�i;j� is false in �"��1P 0 . Since the clauses di;j are theonly ones that de�ne A in P 0, we have that A�i;j� = A� = A� is false in �"�P 0 .Now to complete the proof, we have to observe two facts:- First, that if we perform some further unfoldings on the resulting clauses, thenwe can only \speed up" the process of �nding the truth value of A. In fact, by thesame kind of reasoning used above, if A� is true in �"�P 0 , and P 00 is obtained from P 0by unfolding some atoms in the bodies of the clauses di;j, then, for some � � �, A�is true in �"�P 00 .- Second, that if cl contains just one atom, or more than two atoms, then the exactsame reasoning applies. 2

5.3. Correctness of the transformation 81The replacement operationIn order to prove the correctness of the unfold/fold transformation schema we willuse (a simpli�ed version of) the results in chapter 4 on the simultaneous replacementoperation.As we explained in section 2.3.2, Fitting's model semantics corresponds to thesemantics given by CompL(P)L [DCAL. Here, for the sake of notation's simplicity,given two �rst-order formulas E and F and a normal program P , instead of writing,E �=CompL(P) [DCAL F (See de�nition 4.1.2 and Lemma 4.2.3) we'll write F �P E,or, equivalently, we'll say that F is equivalent to E wrt Fit(P), Moreover, if the delayof F wrt E in lfp(�P) is zero (see De�nition 4.2.5) we'll say that F is not-slower thatE. The following Theorem is a particular case of Corollary 4.2.7.Theorem 5.3.3 Let P 0 be a program obtained by simultaneously replacing the con-junctions f ~C1; : : : ; ~Cng with f ~D1; : : : ; ~Dng in the bodies of the clauses of P . If foreach ~Ci, there exists a (possibly empty) set of variables ~xi such that the followingthree conditions hold:(a) [locality of the variables in ~xi]. ~xi is a subset of the variables local to ~Ciand ~Di, that is, ~xi � V ar(~Ci) [V ar(~Di) and the variables in ~xi don't occur inf ~D1; : : : ; ~Di�1; ~Di+1; : : : ; ~Dng nor anywhere else in the clause where ~Ci is found.(b) [equivalence of the replacing and replaced parts]. 9~xi ~Di �P 9~xi ~Ci(c) [the Di's are not-slower than the Ci's]. 9~xi ~Di is not-slower than 9~xi ~Ci.then Fit(P) = Fit(P 0).A property we will need in the sequel is the following.Proposition 5.3.4 Suppose that A ~C; ~E is a clause of P and that P 0 is obtainedfrom P by replacing ~C with ~D in such a way that the conditions of Theorem 5.3.3are satis�ed (so that Fit(P) = Fit(P 0)). Then� Each time that A� is true (resp. false) in �"�P then A� is true (resp. false) in�"�P 0Proof. This is a consequence of the fact that the replacing conjunction is not-slowerthan the replaced one. The formal proof is omitted here, it can be inferred byanalyzing the proof of Theorem 4.2.6. 2Before we provide the proof of the correctness of the four step schema, we needto establish some further preliminary results. The �rst one states that the converseof A holds in any case.Proposition 5.3.5 Each time that 9 ~w ~B� is true in some �"�P1 , then there exists anon-limit ordinal � � � such that 9 ~w ~B� is true in �"�P1 .Proof. It follows at once from the de�nition of Fitting's operator. 2The following important transitive property holds:

82 Chapter 5. Preservation of Fitting's Semantics : : :Proposition 5.3.6 Let P and P 0 be normal programs, E and F be �rst order for-mulas;� If E �P F and Fit(P) = Fit(P 0), then E �P 0 F . 2Now we can provide the details of the proof.Correctness of the four step schemaWe now prove the correctness of the four step schema. For the sake of simplicitywe restrict ourselves to the case in which Step 1 introduces only one clause. Theextension to the general case is straightforward.Let P1; : : : P4 be the sequence of programs obtained via the four step schema: P1is the initial program, i.e. the one that containsDdef . P2, P3 and P4, are the programsobtained by applying steps Step 2 through Step 4. In order to show that the Fitting'smodels of programs P1; : : : P4 coincide, we proceed as follows:By the correctness of the unfolding operation, Corollary 5.3.1 we have that Fit(P1) =Fit(P2).We perform some further unfolding on some atoms of P2, obtaining a new programthat we will call P2u, again by Corollary 5.3.1 we have that Fit(P2) = Fit(P2u); thenwe produce a \parallel sequence" of programs P3u; P4u by applying the simultaneousreplacement operation, miming, to some extent, the original transformation. Byapplying Theorem 5.3.3 we will show that Fit(P2u) = Fit(P3u) = Fit(P4u).Finally we show that programs P3u and P4u are obtainable respectively from P3and P4 by appropriately applying the unfold operation, and hence, by Corollary 5.3.1,that Fit(P3) = Fit(P3u) and that Fit(P4) = Fit(P4u). This will end the proof. Fig.1illustrates both the original transformation and its parallel sequence.Initial programLet us establish some notation: P1 : : : P4 are the programs obtained by applyingthe four step schema to program P , and c0 : H ~B: is the (only) clause addedto program P in Step 1. We also denote by ~w the set of the local variables of ci,~w = V ar(~B)nV ar(H). For the moment, let us make the following restriction:� till the end of 5.3, we assume that ~B doesn't contain negative literals.Later, in subsection 5.3, we will prove the general case.A simple consequence of the fact that c0 is the only clause de�ning the predicatesymbol of H is the following.Observation 5.3.7� H �P1 9 ~w ~B; 2

5.3. Correctness of the transformation 83P2 and P2uP2 is obtained by unfolding some of the atoms in ~B, so P2 = P [fAi ~Ui; ~Nig,where the atoms in ~Ni are those that have not been unfolded during Step 1 (N standsfor Not unfolded, while U for Unfolded), so ~Ni is equal to a subset of an instance of~B and each Ai is an instance of H. We obtain P2u from P2 by further unfolding allthe atoms in each ~Ni. We denote by fci;j : (Ai ~Ui)i;j ; ~Di;jg the set of clauses ofP2u obtained from clause ci by unfolding the atoms in ~Ni. By the correctness of theunfolding operation, Corollary 5.3.1, we have thatFit(P1) = Fit(P2) = Fit(P2u) (5.2)P1 = P [Ddefwhere Ddef = fc0 : H ~BgP2 = P [Dunfwhere Dunf = fci : Ai ~Ui; ~NigP3 = P [Dfoldwhere Dfold = fc0i : Ai ~U 0i ; ~NigP4 = Pfold [Dfoldwhere Dfold = fc0i : Ai ~U 0i ; ~Nig
???

P2u = P [Dunf�where Dunf� = fc0i;j : (Ai ~Ui)i;j; ~Di;jgP3u = P [Dfold�where Dfold� = fc0i;j : (Ai ~U 0i)i;j ; ~Di;jgP4u = Pfold [Dfold��where Dfold�� = fc0i;j : (Ai ~U 0i)i;j; ~D0i;jg??Fig. 1. Diagram of the transformation (left) together with the \parallel sequence"(right).Moreover, the following properties hold:Observation 5.3.8� H �P2u 9 ~w ~B;� H is not-slower than 9 ~w ~B in P2u.Proof. From Observation 5.3.7 we have that H �P1 9 ~w ~B. The �rst statement followsthen from (5.2) and Proposition 5.3.6. For the second, �x � and let � be the least

84 Chapter 5. Preservation of Fitting's Semantics : : :ordinal such that 9 ~w ~B� is true (or false) in �"�P2u . The clauses de�ning the atoms in~B are the same in P1, P2 and P2u, so 9 ~w ~B is true (resp. false) in �"�P1 as well. Fromcondition A and Proposition 5.3.5 we have that � is a non-limit ordinal. Hence, bythe de�nition of �, H� is true (resp. false) in �"�+1P1 , and, by Lemma 5.3.2 H� is true(resp. false) in �"�P2u . 2P3 and P3uP3u is obtained from P2u as follows.Suppose that in Step 2 we performed a recursive folding on the clause ci :Ai ~B�; ~Ri; ~Ni of P2, obtaining c0i : Ai H�; ~Ri; ~Ni in P3. In the diagram wedenote by ~U 0i the conjunction of literals resulting from the application of the recursivefolding on the conjunction ~Ui (so ~Ui = ~B�; ~Ri and ~U 0i = H�; ~Ri).On P2u we then perform the following. In each of the clauses ci;j we transform~Uii;j into ~U 0ii;j by replacing conjunctions of literals of the form ~B�i;j with H�i;jwherever needed; we call the resulting clauses c0i;j . It is easy to see that if we unfoldall the atoms in ~Ni in the body of clause c0i in P3, then the resulting clauses are exactlythe c0i;j in P3u; this is best shown by the diagram. Hence P3u is obtainable from P3 byappropriately applying the unfolding operation. From Corollary 5.3.1 it follows thatFit(P3) = Fit(P3u) (5.3)Now we show that Fit(P2u) = Fit(P3u). First we need the following.Proposition 5.3.9 Let Q be a program, A, B be atoms and ~y be a set of variables,such that A �Q 9~yB. Suppose also that � is a renaming over ~y and that for eachvariable z that occurs in A or B, but not in ~y, V ar(z�) \ V ar(~y�) = ;. Then� A� �Q 9(~y�) B�Proof. Straightforward. 2Since i;j results from unfolding the atoms in ~Ni, we have that Dom(i;j) \ V ar(ci)� V ar(~Ni). Hence, by the conditions on � in Step 2, Dom(i;j) \ ~w� = ; and~w�i;j = ~w�; so �i;j is a renaming over ~w, and the variables in ~w�i;j do not occuranywhere else in ci;j. From Observation 5.3.8 and Proposition 5.3.9 we have that� H�i;j �P2u 9(~w�i;j) ~B�i;j;� H�i;j is not-slower than 9(~w�i;j) ~B�i;j in P2u.Since we obtained P3u from P2u by simultaneously replacing conjunctions (of theform) ~B�i;j with H�i;j , by Theorem 5.3.3Fit(P2u) = Fit(P3u): (5.4)Moreover, the following properties hold:Observation 5.3.10� H �P3u 9 ~w ~B;

5.3. Correctness of the transformation 85� H is not-slower than 9 ~w ~B in P3u.Proof. The �rst statement follows fromObservation 5.3.8, (5.4) and Proposition 5.3.6.For the second �rst note that going from P2u to P3u we have a�ected only clauses thatde�ne the predicate new, moreover no other predicates de�nition depends on theseclauses, in particular the atoms in ~B are independent from them, hence, since H isnot-slower than 9 ~w ~B in P2u, the statement follows from Proposition 5.3.4. 2P4 and P4uP4 is obtained fromP3 by transforming some of the clauses of P of the formA ~B�; ~Einto A H�; ~E.Now we want to obtain P4u from P3u in such a way that P4u is obtainable alsofrom P4 by unfolding the atoms in the conjunctions ~Ni.Let d : A ~B�; ~E be one of the clauses of P3 that are transformed in Step 4.First note that d belongs both to P3 and P3u, in fact d was already present it theoriginal program P , and never modi�ed. We can then apply the same operationsto the clauses of P3u. Observe that for the conditions on � given in Step 4, and byObservation 5.3.10 we have thatObservation 5.3.11� H� �P3u 9(~w�) ~B�� H� is not-slower than 9(~w�) ~B� in P3u 2Second, notice that in case that d was used as unfolding clause for going from P2to P2u, then some instances of ~B� were propagated into P3u. Using the notation ofthe diagram, this is the case when some ~Ni (in P2) is of the form A0; ~Fi where A andA0 are uni�able atoms, then one of the ~Di;j (in P2u) is of the form ~Di;j = (~B; ~Fi)�0.However, if we unfold Ni in P4, what we get is ~D0i;j = H�0; ~Fi, that has H�0 insteadof ~B�0. By the same argument used for �i;j in 5.3, we have thatObservation 5.3.12� H�0 �P3u 9(~w�0) ~B�0� H�0 is not-slower than 9(~w�0) ~B�0 in P3u 2So in order to obtain P4u from P3u we have then to do two things: First, replace~B�, with the corresponding H� in all the clauses d that are transformed in Step 4.Second, replace ~B�0 with H�0 in the ~Di;j so that P4u contains ~D0i;j instead of ~Di;j.This tantamounts to the application of a simultaneous replacement.From Observations 5.3.11 and 5.3.12, and Theorem 5.3.3 we have thatFit(P3u) = Fit(P4u) (5.5)Moreover P4u is obtainable from P4 by unfolding all the atoms in the conjunctions~Ni in the clauses where they occur. HenceFit(P4) = Fit(P4u): (5.6)So far, because of (1), (2), (3), (4) and (5), we have the following

86 Chapter 5. Preservation of Fitting's Semantics : : :Proposition 5.3.13 If condition A holds and ~B does not contain negative literals,then� Fit(P1) = Fit(P2) = Fit(P3) = Fit(P4) 2The general caseWe can �nally prove Theorem 5.2.3. Let us state it again.Theorem 5.2.3. Let P1; : : : ; P4 be a sequence of programs obtained applying thetransformation schema to program P , Let also Ddef = fHi ~Big be the set of clausesintroduced in Step 1, and, for each i, ~wi be the set of local variables of ci: ~wi =V ar(~Bi)nV ar(Hi). If each ci in Ddef satis�es the following condition:A each time that 9 ~wi ~Bi� is false in some �"�P1 , then there exists a non-limit ordinal� � � such that 9 ~wi ~Bi� is false in �"�P1Then Fit(P1) = Fit(P2) = Fit(P3) = Fit(P4).Proof. We consider here the simpli�ed case in which Step 1 introduces only oneclause which in turn contains only one negative literal in the body, i.e. Ddef =fc0 : H :l(~y); ~B0g. The generalization to the case of multiple clauses and multiplenegative literals is straightforward and omitted here. Notice that if c0 contained nonegative literals, then the result would following directly from Proposition 5.3.13.We now perform a double transformation on P1: �rst, we enlarge it with thefollowing new de�nition: d : notl(~y) :l(~y); then, we replace each instance :l(~t)of l(~y) that occurs in the body of a clause with the corresponding instance notl(~t)of notl(~y). This replacement operation clearly preserves Fitting's model of the pro-grams, in fact it can be undone by unfolding. Let us call P 01 the program so obtained.We have that Fit(P1) = Fit(P 01)jBP1 (5.7)Where Fit(P 01)jBP1 denotes the restriction of Fit(P 01) to the atoms in the Herbrandbase of P1.Now P 01 contains, instead of clause c0, the following: c00 = H notl(~y); ~B0. whichis a de�nite clause.Now notice that, since the unfold operation is de�ned only for positive literals, then:l(~y) is never unfolded in the transformation P1 : : : P4. It follows that, by performingthe same operations used for going from P1 to P4, we can obtain another \parallelsequence" P 01 : : : P 04 that starts with program P 01. By the same arguments used toprove (5.7), we have that, for i 2 [1 : : :4],Fit(Pi) = Fit(P 0i)jBP1 (5.8)Moreover, by Proposition 5.3.13,Fit(P 01) = Fit(P 02) = Fit(P 03) = Fit(P 04) (5.9)From (5.8) and (5.9) the thesis follows. 2

Chapter 6Unfold/Fold Transformations of CLPModules
In this chapter We propose a transformation system for CLP programs and modules.The framework is inspired by the one of Tamaki and Sato for pure logic programs [96].However, the use of CLP allows us to introduce some new operations such as splittingand constraint replacement. We provide two sets of applicability conditions. The�rst one guarantees that the original and the transformed programs have the samecomputational behaviour, in terms of answer constraints. The second set containsmore restrictive conditions that ensure compositionality: we prove that under theseconditions the original and the transformed modules have the same answer constraintsalso when they are composed with other modules. This result is proved by �rstintroducing a new formulation, in terms of trees, of a resultants semantics for CLP.As corollaries we obtain the correctness of both the modular and the non-modularsystem w.r.t. the least model semantics.6.1 IntroductionModular Constraint Logic ProgramsConstraint Logic Programming (CLP for short) is a powerful declarative program-ming paradigm in which constraints are primitive elements and the computation isspeci�ed by a logical inference rule. CLP has already been successfully employed inmany diverse �elds such as �nancial analysis [63], circuit synthesis [49] and combinat-orial search problems [97]. Its success is partially due to the fact that the declarativenature of CLP allows us to solve complex problems by simple and concise programs.CLP's exibility can be further enhanced by the adoption of constructs for structuringprograms. This is an important step forward as the incremental and modular designis by now a well established software-engineering methodology used to design, verifyand maintain large applications. Indeed, splitting a program into several smallermodules reduces the complexity of the design and of the validation phases. Moreover,87

88 Chapter 6. Unfold/Fold Transformations of CLP Modulesit also helps to develop adaptable software, as changes in program's speci�cation cana�ect only some modules rather that the whole program. For these reasons, modular-ity has been receiving received a considerable attention and, as the recent survey [24]shows, in the last few years several di�erent proposals were introduced for integratingmodule constructs into logic languages. Here we adhere to the original approach ofR. O'Keefe [76], and we consider a constraint logic program to be a combination ofseveral separate modules, where di�erent modules are combined together by a simplecomposition operator �.MotivationAll the (unfold/fold) transformation systems proposed so far for (constraint) logicprograms, with the only exception of [69], assume that the entire program is availableat the time of transformation. This is often an unpractical assumption, either becausenot all program components have been de�ned, or because for handling the complexitya large program has been broken into several smaller modules.Now, a transformation system for modules requires ad-hoc applicability condi-tions: when we transform P into P 0 we don't just want P and P 0 to have thesame (answer constraint) semantics: we want them to be observationally equivalentwhatever the context in which they are employed. When this condition is satis�edwe say that P and P 0 are observationally congruent.In this chapter, we develop a transformation system for the optimization of CLPmodules. This is accomplished in two steps. First, we generalize the unfold/foldsystem of Tamaki and Sato [96] to CLP programs. The full use of CLP allows us tointroduce some new operations, such as splitting and constraint replacement, whichbroaden the range of possible optimizations. In this �rst part we also de�ne newapplicability conditions for the folding operation which avoid the use of substitutionsand which are simpler that the ones used previously.Afterwards, we de�ne a (compositional) transformation system for modules. Thisis obtained by adding some further applicability conditions, which we prove su�cientto guarantee that the transformed module is observationally congruent to the ori-ginal one. This system allows us to transform independently the components of anapplication, and then to combine together the results while preserving the originalmeaning of the program in terms of answer constraints. This is useful when a pro-gram is not completely speci�ed in all its parts, as it allows us to optimize on theavailable modules. When a new module is added, we can just compose it (or itstransformed version) with the already optimized parts, being sure that the compos-ition of the transformed modules and the composition of the original ones have thesame computational behaviour in terms of answer constraints.This result is proved by using a new formulation, in terms of trees, of a resultantssemantics which models answer constraints and is compositional w.r.t. union ofprograms. From a particular case of the main theorem it follows that also the non-modular transformation system preserves the computational behaviour of programs.Finally, since the least model (on the relevant algebraic structure) can be seen as

6.2. Preliminaries: CLP programs 89an abstraction of the compositional semantics, we obtain as a corollary that also theleast model is preserved.This chapter is organized as follows. The next Section contains some preliminarieson CLP programs. In Section 6.3 we introduce the notion of module and we formalizethe resultants semantics for CLP by using trees. Section 6.4 provides the de�nitionof the transformation system. In Section 6.5 we add the applicability conditionsneeded to obtain a modular system and we state the main correctness result. InSection 6.6 we show that the Tamaki-Sato's system can be embedded into ours. As aconsequence, the conditions given in Section 6.5 can also be added to those de�ned in[96] in order to obtain a modular unfold/fold system for pure logic programs. Section6.7 concludes by comparing our results to those contained in two related works. Theproof of the main technical result is deferred to the Appendix.6.2 Preliminaries: CLP programsThe Constraint Logic Programming paradigm CLP(X) (CLP for short) has beenproposed by Ja�ar and Lassez [52, 51] in order to integrate a generic computationalmechanism based on constraints with the logic programming framework. The ad-vantages of such an integration are several. From a pragmatic point of view, CLP(X)allows one to use a speci�c constraints domain X and a related constraint solverwithin the declarative paradigm of logic programming. From the theoretical view-point, CLP provides a uni�ed view of several extensions of pure logic programming(e.g. arithmetics, equational programming) within a framework which preserves theexistence of equivalent operational, model-theoretic and �xpoint semantics [52]. In-deed, as discussed in [69], most of the results which hold for pure logic programs canbe lifted to CLP in a quite straightforward way.The reader is assumed to be familiar with the terminology and the main resultson the semantics of (constraint) logic programs. In this subsection we introduce somenotations we will use in the sequel and, for the reader's convenience, we recall somebasic notions on constraint logic programs. Lloyd's book and the survey by Apt[65, 3] provide the necessary background material for logic programming theory. Forconstraint logic programs we refer to the original papers [52, 51] by Ja�ar and Lassezand to the recent survey [53] by Ja�ar and Maher.The CLP framework was originally de�ned using a many-sorted �rst order lan-guage. In this chapter, to keep the notation simple, we consider a one sorted language(the extension of our results to the the many sorted case is immediate). We assumeprograms de�ned on a signature with predicates � consisting of a pair of disjoint setscontaining function symbols and predicate symbols. The set of predicate symbols,denoted by �, is assumed to be partitioned into two disjoint sets: �c (containing pre-dicate symbols used for constraints) which contains also the equality symbol \=", and�u (containing symbols for user de�nable predicates). All the following de�nitionswill refer to some given �, �c and �u.The notations ~t and ~X will denote a tuple of terms and of distinct variables

90 Chapter 6. Unfold/Fold Transformations of CLP Modulesrespectively, while ~B will denote a (�nite, possibly empty) conjunction of atoms.The connectives \," and 2 will often be used instead of \^"to denote conjunction.A primitive constraint is an atomic formula p(t1; : : : ; tn) where the ti's are terms(built from � and a denumerable set of variables) and p 2 �c. A constraint is a �rstorder formula built using primitive constraints. A CLP rule is a formula of the formH c 2 B1; : : : ; Bn:where c is a constraint, H (the head) and B1; : : : ; Bn (the body) are atomic for-mulas which use predicate symbols from �u only. A goal (or query), denoted byc 2 B1; : : : ; Bn, is a conjunction of a constraint and atomic formulas as before. ACLP program is a �nite set of CLP rules.The semantics of CLP programs is based on the notion of structure. Given asignature with predicates �, a �-structure (structure for short) D consists of a set(the domain) D and an assignment of functions and relations on D to the functionsymbols in � and to the predicate symbols in �c respecting arities.A D-interpretation is an assignment that maps each predicate symbols in �u toa relation on the domain of the structure. A D-interpretation I is called a D-modelof a CLP program P if all the rules of P evaluate to true under the assignment ofrelations and function provided by I and by D. We recall that there exists ([51])the least D-model of a program P which is the natural CLP counterpart of the leastHerbrand model for logic programs.Given a structure D and a constraint c, D j= c denotes that c is true underthe interpretation for constraints provided by D. Moreover if # is a valuation (i.e.a mapping of variables on the domain D), and D j= c# holds, then # is called aD-solution of c (c# denotes the application of # to the variables in c).Here and in the sequel, given the atoms A, H, we write A = H as a shorthandfor:- a1 = t1 ^ : : : ^ an = tn, if, for some predicate symbol p and natural n, A �p(a1; : : : ; an) and H � p(t1; : : : ; tn)- false, otherwise.This notation readily extends to conjunctions of atoms. We also �nd convenientto use the notation 9�~x � from [53] to denote the existential closure of the formula �except for the variables ~x which remain unquanti�ed.The operational model of CLP is obtained from SLD resolution by simply sub-stituting D-solvability for uni�ability. More precisely, a derivation step for a goalG : c0 2 B1; : : : ; Bn in the program P results in the goalc0 ^ (Bi = H) ^ c 2 B1; : : : ; Bi�1; ~B;Bi+1; : : : ; Bnprovided that Bi is the atom selected by the selection rule and there exists a clause inP standardized apart (i.e. with no variables in commonwithG)H c 2 ~B such that(c0 ^ (Bi = H) ^ c) is D-satis�able, that is, D j= 9 c0 ^ (Bi = H) ^ c. A derivationof length i for a goal G0 in the program P is a sequence of goals G0; G1; : : : ; Gi such

6.3. Modular CLP Programs 91that Gj is obtained from Gj�1 in one derivation step in P , for j 2 [1; i]. In thefollowing a derivation � : G0; G1; : : : ; Gi in P will be denoted by G0 P; Gi and itslength by j�j Notice that, with this notation, a derivation of length zero is denoted byG P; G. A successful derivation (refutation) is a �nite derivation whose last elementis a goal of the form (c 2). In this case, 9�V ar(G) c is called the answer constraintand is considered the result of the computation.Finally, by naturally extending the usual notion used for pure logic programs, wesay that a query c 2 ~C is an instance of the query d 2 ~D i� for any solution of cthere exists a solution � of d such that ~C � ~D�.6.3 Modular CLP ProgramsFollowing the original paper of R. O'Keefe [76], the approach to modular programmingwe consider here is based on a meta-linguistic programs composition mechanism.This provides a formal background to the usual software engineering techniques forthe incremental development of programs.Viewing modularity in terms ofmeta-linguistic operations on programs has severaladvantages. In fact it leads to the de�nition of a simple and powerful methodology forstructuring programs which does not require to extend the CLP theory (this is not thecase if one tries to extend CLP programs by linguistic mechanisms richer than thoseo�ered by clausal logic). Moreover, meta-linguistic operations are quite powerful,indeed the typical mechanisms of the object-oriented paradigm, such as encapsulationand information hiding, can be realized by means of simple composition operators([16]).Here, in order to keep the presentation simple, we follow [22] and say that amodule M is a CLP program P together with a set Op(M) of predicate symbolsspecifying the open predicates.De�nition 6.3.1 (Module) A CLP module M is a pair hP;Op(M)i where P is aCLP program and Op(M) is a set of predicate symbols. 2The idea underlying the previous de�nition is that the open predicates, speci�ed inOp(M), behave as an interface for composing M with other modules. The de�nitionof open predicates could be partially given in M and further speci�ed by importingit from other modules. Symmetrically, the de�nitions of open predicates may beexported and used by other modules. A typical practical example is a deductivedatabase composed of two modules, in which the �rst one I contains the intensionalpart in the form of some rules which refer to an unspeci�ed extensional part. Thislatter is de�ned in the second module E which contains facts (unit clauses) describingthe basic relations. In this case the extensional predicates which are de�ned in E areexported to I, which in turn imports them when composing the two parts. Furtherde�nitions for the extensional predicates can be incrementally added to the databaseby adjoining new modules.To simplify the notation, when no ambiguity arises we will denote by M also the

92 Chapter 6. Unfold/Fold Transformations of CLP Modulesset of clauses P . To compose CLP modules we again follow [22] and use a simpleprogram union operator. We denote by Pred(E) set of predicate symbols whichappear in the expression E.De�nition 6.3.2 (Module Composition) LetM = hP;Op(M)i andN = hQ;Op(N)ibe modules. We de�ne M �N = hP [Q;Op(M) [Op(N)iprovided that Pred(P) \ Pred(Q) � Op(M) \ Op(N) holds. Otherwise M � N isunde�ned. 2So, when composing M and N , we require the common predicate symbols to beopen in both modules. As previously mentioned, more sophisticated compositions(like encapsulation, inheritance and information hiding) can be obtained from theone de�ned above by suitably modifying the treatment of the interfaces (essentiallyby introducing renamings to simulate hiding and overriding).Now, in order to de�ne the correctness of our transformation systems, we needto �x the kind of module's (and program's) equivalence that we want to establishbetween a program and its transformed version.Since the result of a CLP computation is an answer constraint, it is natural tosay that two programs are observationally equivalent to each other i� they producethe same answer constraints (up to logical equivalence in the structure D) for anyquery. This concept is formalized in the following De�nition.De�nition 6.3.3 (Program's Equivalence) Let P1; P2 be CLP programs. Wesay that P1 and P2 are (observationally) equivalent,P1 � P2i�, for any query Q and for any i; j 2 [1; 2], if there exists a derivation Q Pi; ci 2 thenthere exists a derivation Q Pj; cj 2 such that D j= 9�V ar(Q) ci $ 9�V ar(Q) cj. 2This notion is satisfactory when programs programs are seen as completely de�nedunits. However, the relation � is far too weak when considering modules. Forinstance, consider the followingExample 6.3.4 Consider the modules M1 : hP1; fpgi and M2 : hP2; fpgi where P1is q(X) true 2 p(X).p(X) X=a 2 .While P2 isq(X) X=a 2 p(X).p(X) X=a 2 .It is easy to see that P1 � P2. However, if we compose these two modules withM : hP; fpgi where P is the program

6.3. Modular CLP Programs 93p(X) X=b 2 .we have that M1 � M and M2 � M have quite di�erent behaviour, in particularM1 �M 6�M2 �M . 2The notion of equivalence which we need when transforming CLP modules hasto take into account also the contexts given by the � composition. In other words,we have to strengthen � to obtain a congruence wrt the � operator. Therefore thefollowing.De�nition 6.3.5 (Module's Congruence) Let M1 and M2 be CLP modules. Wesay that M1 is (observationally) congruent to M2,M1 �c M2i� Op(M1) = Op(M2) and for every module N such that M1 � N and M2 � N arede�ned, M1 �N �M2 �N holds. 2So M1 �c M2 i� they have the same open predicates and, for any query, theyproduce the same answer constraints in any �-context. By taking N as the emptymodule we immediately see that if M1 �c M2 then M1 �M2.This notions of equivalence and of congruence are used to de�ne the correctness ofour transformation system: we say that a transformation for CLP programs (modules)is correct i� it maps a program (a module) into an �- (�c-) equivalent one.A compositional semantics for CLP modulesThe correctness proofs for our transformation system will be carried out by showingthat the system preserves a semantics (borrowed from [42]) which models answerconstraints and is compositional w.r.t. �. This implies that it is also correct w.r.t.�c, in the sense that if two modules have the same semantics then they are �c-equivalent. From this property it follows the desired correctness result. Basically,the semantics we are going to use us a straightforward lifting to the CLP case ofthe compositional semantics de�ned in [22] for logic programs. The aim of [22] wasto obtain a semantics compositional w.r.t. union of programs. In this respect it iseasy to see that the standard semantics, such as the least D-model and the computedanswer semantics, are not compositional wrt �; consider for instance the modulesM1 and M2 in Example 6.3.4: they have the least D-model, where M1 �M andM2 �M don't (the same reasoning applies for the answer constraint semantics of[43]). Following an idea �rst introduced in [44], compositionality was then obtainedby choosing a semantic domain based on clauses. As we discuss below the resultingsemantics turns out to model the notion of \resultant", hence its name.In order to de�ne the semantic domain, we use the following equivalence relation,which, intuitively, is a generalization to the CLP case of the notion of variance.De�nition 6.3.6 Let cl1 : A1 c1 2 ~B1 and cl2 : A2 c2 2 ~B2 be two clauses.We write cl1 ' cl2 i� for any i; j 2 [1; 2] and for any D-solution # of ci there existsan D-solution of cj such that Ai# = Aj and ~Bi# and ~Bj are equal as multisets.

94 Chapter 6. Unfold/Fold Transformations of CLP ModulesMoreover, given two programs P and P 0 we say that P ' P 0 i� P 0 is obtained byreplacing some clauses in P for '-equivalent ones. 2Notice that, in the previous de�nition, the body of a clause is considered as amultiset. Considering bodies of clauses as sets instead of multisets would not allowto model correctly answer constraints, since adding a duplicate atom to the body ofa clause can augment the set of computed constraints. For instance, if we considerthe programs Q1 :q(X,Y) true 2 r(X,Y),r(X,Y).r(X,Y) X=a.r(X,Y) Y=b.and Q2 : q(X,Y) true 2 r(X,Y).r(X,Y) X=a.r(X,Y) Y=b.The query q(X,Y) has the computed answer constraint X = a^Y = b in Q1 and notin Q2.The following Lemma shows that the equivalence relation ' is correct wrt thecongruence relation �c.Lemma 6.3.7 [42] Let M = hP; �i and M 0 = hP 0; �i be two modules with the sameset of open atoms. If P ' P 0 then M �c M 0. 2We are now able to de�ne the semantic domain. For the sake of simplicity, wewill denote the '-equivalence class of a clause c by c itself.De�nition 6.3.8 (Denotation) Let � be a set of predicate symbols and let C bethe set of the '-equivalence classes of the CLP clauses in the given language. Theinterpretation base C� is the set fA c 2 ~B 2 C j Pred(~B) � �g. A denotation isany subset of C�. 2The following is the de�nition of the resultant semantics as it was originally givenin [22] for pure logic programs and applied to CLP in [42].De�nition 6.3.9 (Resultants Semantics for CLP) Let M = hP;Op(M)i be amodule. Then we de�neO(M) = fp(~x) c 2 ~B 2 COp(M) j there exists a derivation true 2 p(~x) P; c 2 ~B g:2If there exists a derivation c 2 ~A P; d 2 ~B, then the formula c 2 ~A d 2 ~B iscalled a computed resultant for the query c 2 ~A in P . It can be shown that computedresultants for generic queries can be obtained by combining together resultants forsimple queries of the form true 2 p(~x). Therefore O(M) is expressive enough tocharacterize all the resultants computable in P . In particular, O(M) models alsothe answer constraints computed in M , since these can be obtained from resultantsof the form c 2 ~A d 2 . The compositionality of previous semantics w.r.t. � is

6.3. Modular CLP Programs 95proved in [42]. From such a result it follows the correctness of O w.r.t. �c, statedby the following Corollary.Corollary 6.3.10 (Correctness, [42]) LetM = hP;Op(M)i andN = hQ;Op(N)ibe modules such that Op(M) = Op(N).� If O(M) = O(N) then M �c N . 2In the particular case Op(M) = ;, i.e. when all the predicates are completelyde�ned, O(M) coincides with the answer constraint semantics which is correct andfully abstract w.r.t. � ([43]).Example 6.3.11 Consider again the modules M1 and M2 of Example 6.3.4. ThenO(M1) = fp(X) X = a 2 ; q(X) X = a 2 ; q(X) true 2 p(X)gO(M2) = fp(X) X = a 2 ; q(X) X = a 2 gSo the fact that M1 and M2 are not observationally congruent is reected by the factthat O(M1) 6= O(M2). 2Resultants semantics via treesWe now provide a new, alternative formulation of the resultant semantics in terms ofproof trees. This particular notation will be used to prove the correctness results.We assume known the usual notion of �nite labeled tree and the related termino-logy. Given a �nite labeled tree rooted in the node N , we say that T 0 is an immediatesubtree of T if T 0 is the subtree of T which is rooted in a son of N .De�nition 6.3.12 (Partial proof tree) Let A be an atom A partial proof tree forA is any �nite labeled tree T satisfying the following conditions1. The root node of T is labeled by a pair hA = A0 ; A0 cA 2 A1; : : : ; Ani suchthat A0 and A have the same predicate symbol.2. Each immediate subtree Tj of T is a partial proof tree for a distinct Aj with1 � j � n.3. All the clauses used in the labels of T are pairwise variable disjoint and haveno variables in common with the atom in the lhs (left hand side) of the labelequation in the root node. 2We call label equation and label clause of the node N the left and the right handside of the label of N , respectively. Moreover, if Ai is an atom in the body of thelabel clause of the root of T and Ti is an immediate subtrees of T which is a partialproof tree for Ai, we say that Ti is attached to Ai. Using this notation, condition 2can be restated as follows: \no two immediate subtrees of T are attached to the sameatom of the label clause of the root (and therefore, of any) node". Finally, we saythat T is a tree in P , if the label clauses of all its nodes are (variants of) clauses ofthe program P .Notice that, according to previous de�nition, there might be someAj in the bodiesof label clauses with no subtrees attached to them. We call them the elements of theresidual as speci�ed below.

96 Chapter 6. Unfold/Fold Transformations of CLP ModulesDe�nition 6.3.13 Let T be a partial proof tree.� The residual of a node in T having the clause label A0 cA 2 A1; : : : ; An, isthe multiset consisting of those Aj's, 1 � j � n, that do not have an immediatesubtree attached to.� The residual of T is the multiset resulting from the (multiset) union of theresiduals of its nodes. 2In order to establish the connection between the resultants semantics and partialproof-trees, we introduce now in a natural way the notion of resultant of partial prooftrees.De�nition 6.3.14 Let T be a partial proof tree. We call the global constraint of Tthe conjunction of all the label equations together with the constraints of all the labelclauses of the nodes of T . 2De�nition 6.3.15 Let T be a partial proof tree of A. Let c be its global constraintand F1; : : : ; Fk be its residual. If c is satis�able we call the clause A c 2 F1; : : : ; Fkthe resultant of T . 2In the sequel we are interested in those partial trees whose residuals consistexclusively of only open atoms and whose global constraint is satis�able. Thereforethe following de�nition.De�nition 6.3.16 Let � be a set of predicate symbols. We call �-atom any atomA such that Pred(A) 2 �. An �-tree is a partial proof tree T such that1. the residual of T contains only �-atoms,2. the global constraint of T is satis�able. 2We can now establish the relation between open trees and the resultant semantics.Proposition 6.3.17 (Correspondence) LetM = hP;Op(M)i be a module. ThenA c 2 ~F 2 O(M) i� there exists an �-tree of A in P with A c0 2 ~F 0 as resultantsuch that A c 2 ~F ' A c0 2 ~F 0 and � = Op(M).Proof. Straightforward. 26.4 A transformation system for CLPIn this section we de�ne a transformation system for optimizing constraint logicprograms. The system is inspired by the unfold/fold method proposed by Tamakiand Sato [96] for pure logic programs (which is presented in chapter 1. Here, theuse of constraint logic programs allows us to introduce some new operations whichbroaden the possible optimizations and to simplify the applicability conditions for thefolding operation in [96].Before we begin to de�ne the transformation method, it is important to noticethat all the observable properties of computations we refer to are invariant under '.As we formally prove later, this implies that we can always replace any clause cl in

6.4. A transformation system for CLP 97a program P by a clause cl0, provided that cl0 ' cl. This operation is often useful toclean up the constraints, and, in general, to present a clause in a more readable form.We start from the same requirements on the original (i.e. initial) program introducedin [96]. Here we say that a predicate p is de�ned in a program P , if P contains atleast one clause whose head has predicate symbol p.De�nition 6.4.1 (Initial program) We call a CLP program P0 an initial programif the following two conditions are satis�ed:(I1) P0 is partitioned into two disjoint sets Pnew and Pold,(I2) the predicates de�ned in Pnew don't occur in Pold nor in the bodies of the clausesin Pnew . 2Following this notation, we call new predicates those predicates that are de�nedin Pnew . We also call transformation sequence a sequence of programs P0; : : : ; Pn, inwhich P0 is an initial program and each Pi+1, is obtained from Pi via a transformationoperation.Our transformation system consists of �ve distinct operations. In order to illus-trate them throughout this section we will use the following working example. Tosimplify the notation, when the constraint in a goal or in a clause is true we omit it.So the notation H ~B actually denotes the CLP clause H true 2 ~B.Example 6.4.2 (Computing an average) Consider the following CLP(<)1 pro-gram AVERAGE computing the average of the values in a list. Values may be givenin di�erent currencies, for this reason each element of the list contains a term ofthe form hCurrency; Amounti. The applicable exchange rates may be found by call-ing predicate exchange rates, which will return a list containing terms of the formhCurrency; Exchange Ratei, where Exchange Rate is the exchange rate relative toCurrency. AVERAGE consists of the following clausesaverage(List, Av) Av is the average of the list Listc1: average(Xs, Av) Len > 0 ^ Av*Len = Sum 2exchange rates(Rates),weighted sum(Xs, Rates, Sum),len(Xs, Len).weighted sum(List, Rates, Sum) Sum is the sum of the values in the list Listand each amount is multiplied �rst by the exchange rate corresponding to its currencyweighted sum([], 0).weighted sum([hCurrency, Amounti | Rest], Rates, Sum) Sum = Amount*Value + Sum' 2member(hCurrency, Valuei, Rates),weighted sum(Rest, Rates, Sum').1CLP(<) [55] is the CLP language obtained by considering the constraint domain< of arithmeticover the real numbers.

98 Chapter 6. Unfold/Fold Transformations of CLP Moduleslen(List, Len) Len is the length of the elements in the list Listlen([], 0).len([H|Rest], Len) Len = Len'+1 2 len(Rest, Len').together with the usual de�nition for member. Notice that the de�nition of averageneeds to scan the list Xs twice. This is a source of ine�ciency that can be �xed viaa transformation sequence. 2The �rst transformation we consider is the unfolding. As previously mentioned,all the observable properties we consider are invariant under reordering of the atomsin the bodies of clauses. Therefore the de�nition of unfolding, as well as those of theother operations, is given modulo reordering of the bodies. To simplify the notation,in the following de�nition we also assume that the clauses of a program have beenrenamed so that they are variable disjoint.De�nition 6.4.3 (Unfolding, for CLP) Let cl : A c 2 H; ~K be a clause in theprogram P , and fH1 c1 2 ~B1; : : : ; Hn cn 2 ~Bng be the set of the clauses in Psuch that c ^ ci ^ (H = Hi) is D-satis�able. For i 2 [1; n], let cl0i be the clauseA c ^ ci ^ (H = Hi) 2 ~Bi; ~KThen unfolding H in cl in P consists of replacing cl by fcl01; : : : ; cl0ng in P . 2In this situation we also say that fH1 c1 2 ~B1; : : : ; Hn cn 2 ~Bng are the unfold-ing clauses.Example 6.4.2 (part 2) The transformation strategy which we use to optimizeAVERAGE is often referred to as tupling (see [77]) or as procedural join (see [62]).First, we introduce a new predicate avl de�ned by the following clauseavl(List, RATES, AV, LEN) AV is the average of the list List, and LEN is its lengthc2: avl(XS, RATES, AV, LEN) LEN>0 ^ AV*LEN = SUM 2exchange rates(RATES),weighted sum(Xs, RATES, SUM),len(XS, LEN).avl di�ers from average only in the fact that it reports also the list of exchange ratesand the length of the list Xs. Notice that avl, as it is now, needs to traverse the listtwice as well.Now let P0 be the initial program consisting of AVERAGE augmented by c2 andassume that avl is the only new predicate. We start to transform P0 by perform-ing some unfolding operations. First we unfold weighted sum(XS, RATES, SUM) inthe body of c2. The resulting clauses, after having cleaned up the constraints andrenamed some variables, are the following ones

6.4. A transformation system for CLP 99avl([], Rates, Average, Len) Len > 0 ^ Average*Len = 0 2exchange rates(Rates),len([], Len).avl([hCurrency,Amounti|Rest], Rates, Average, Len) Len > 0 ^ Average*Len = Amount*Value+Sum' 2exchange rates(Rates),member(hCurrency, Valuei, Rates),weighted sum(Rest, Rates, Sum'),len([hCurrency,Amounti|Rest], Len).Furthermore, in the above clauses we unfold the atoms len([], Len) and len([hCurrency,Amounti|Rest], Len). This yields the following two clauses:c3: avl([], Rates, Average, 0) 0 > 0 ^ Average*0 = 0 2exchange rates(Rates).c4: avl([hCurrency,Amounti|Rest], Rates, Average, Len) Len > 0 ^ Len = Len'+1 ^ Average*Len = Amount*Value+Sum' 2exchange rates(Rates),member(hCurrency, Valuei, Rates),weighted sum(Rest, Rates, Sum'),len(Rest, Len'). 2Notice that the constraint in the body of clause c3 is unsatis�able. For this reasonc3 could be removed from the body of the program; to do that we need the followingoperation.De�nition 6.4.4 (Clause Removal) Let cl : H c 2 ~B be a clause in the pro-gram P . If D j= :9 cThen we can remove cl from the program P , obtaining the program P 0 = Pnfclg. 2Note 6.4.5 In [77] we �nd the de�nition of a clause deletion operation for pure logicprograms which in CLP terms can be expressed as follows: if cl : H c 2 ~B is aclause in P such that query c 2 ~B has a �nitely failed tree in P 2 then we can removecl from P . Obviously, if D j= :9 c then the goal c 2 A has a (trivial) �nitely failedtree; therefore each time that we can apply the clause removal operation we can alsoapply the clause deletion of [77]. However, clause removal is only apparently morerestrictive than clause deletion, since by combining it with the unfolding operationwe can easily simulate the latter. Indeed, if c 2 ~B has a �nitely failed tree in P then,by a suitable sequence of unfoldings we can always transform the clause A c 2 ~B,in such a way that the set of resulting clauses is either empty or contains only clauseswhose constraints are unsatis�able. So using clause removal, we can then (indirectly)remove cl from the program. We prefer to use clause removal rather than clausedeletion, because when we'll move to the context of modular CLP programs the2The de�nition of �nitely failed tree for CLP is the obvious generalization of the one for purelogic programs.

100 Chapter 6. Unfold/Fold Transformations of CLP Modules�rst operation will remain unchanged while the latter would require some speci�capplicability conditions. 2We now introduce the splitting operation. Here, just like for the unfolding oper-ation, the de�nition is given modulo reordering of the bodies of the clauses and it isassumed that program clauses are variable disjoint.De�nition 6.4.6 (Splitting) Let cl : A c 2 H; ~K be a clause in the program P ,and fH1 c1 2 ~B1; : : : ; Hn cn 2 ~Bng be the set of the clauses in P such thatc ^ ci ^ (H = Hi) is D-satis�able. For i 2 [1; n], let cl0i be the clauseA c ^ ci ^ (H = Hi) 2 H; ~KIf, for any i; j 2 [1; n], i 6= j, the constraint (Hi = Hj) ^ ci ^ cj is unsatis�able thensplitting H in cl in P consists of replacing cl by fcl01; : : : ; cl0ng in P . 2In other words, the splitting operation is just an unfolding operation in which wedo not replace the atom H by the bodies of the unfolding clauses. The condition thatfor no two distinct i; j, (Hi = Hj)^ ci ^ cj is satis�able is easily seen needed in orderto obtain � equivalent programs. Indeed, consider for instance the program Qq(X, Y) p(X, Y)p(a, W).p(Z, b).If we split p(X; Y) in the body of the �rst clause we obtain the program Q0, whichafter cleaning up the constraints consists of the following clauses:q(a, Y) p(a, Y)q(X, b) p(X, b)p(a, W).p(Z, b).Now Q 6� Q0 since the query q(X; Y) has in Q0 the computed answer fX = a; Y = bg,while such an answer is not obtainable in Q.Note 6.4.7 We should mention that an operation called splitting has also beende�ned in a technical report of Tamaki and Sato [95]. However, the operationdescribed here is substantially di�erent from theirs. In CLP terms the splittingoperation de�ned in [95] can be expressed as follows. If cl : H c 2 ~B is aclause and d a constraint then splitting cl via d consists in replacing cl by the twoclauses fH c ^ d 2 ~B; H c ^ :d 2 ~Bg. This operation preserves the minimalD-model (which corresponds to semantics used in [95]) but is does not produce� equivalent programs. Indeed, if we consider the program P = fp(X):g thenby splitting its only clause w.r.t. the constraint X = a we obtain the programP 0 = fp(X) X = a2:; p(X) X 6= a2:g. Clearly P 0 6� P , since the query p(X)returns the answer constraint X = a in P 0 only. 2Example 6.4.2 (part 3) By applying the splitting operation to len(Rest; L0) inclause c4 we obtain the following two clauses:

6.4. A transformation system for CLP 101c5: avl([hCurrency,Amounti],Rates, Average, Len) Len > 0 ^ Len = 1 ^ Average*Len = Amount*Value+Sum' 2exchange rates(Rates).member(hCurrency, Valuei, Rates),weighted sum([], Rates, Sum'),len([], 0).c6: avl([hCurrency,Amounti,J|Rest], Rates, Average, Len) Len > 0 ^Len = Len'+1 ^ Len' = Len''+1 ^ Average*Len = Amount*Value+Sum' 2exchange rates(Rates).member(hCurrency, Valuei, Rates),weighted sum([J|Rest], Rates, Sum'),len([J|Rest], Len').In clause c6 we can now remove the superuous constraint Len' = Len''+1, and inc5 we can do some cleaning up and we can unfold both weighted sum([]; Rates;Sum0)and len([]; 0). After this operations we end up with the following clauses:c7: avl([hCurrency,Amounti],Rates, Average, 1) Average = Amount*Value 2exchange rates(Rates).member(hCurrency, Valuei, Rates).c8: avl([hCurrency,Amounti,J|Rest], Rates, Average, Len) Len > 0 ^ Len = Len'+1 ^ Average*Len = Amount*Value+Sum' 2exchange rates(Rates).member(hCurrency, Valuei, Rates),weighted sum([J|Rest], Rates, Sum'),len([J|Rest], Len'). 2In order to be able to perform the folding operation on clause c8 we need now alast, preliminary operation: the constraint replacement. In fact, as we will discusslater, to apply such a folding, c8 should contain also the constraint Len0 > 0. Clearly,adding Len0 > 0 to the body of c8 cannot be done via a simple cleaning-up of theconstraints, as it transforms c8 in a non '-equivalent clause. However, notice that thevariable Len0 in the atom len([JjRest];Len0) (in the body of c8) represents the lengthof the list [JjRest] which obviously contains at least one element. Indeed, every timethat c8 is used in a refutation its internal variable Len0 will eventually be bounded toa numeric value greater than zero. We can then safely add the redundant constraintLen0 > 0 to body of c8. This type of operation is formalized by the following de�nitionof constraint replacement. Notice that this operation relies on the semantics of theprogram (in the previous speci�c case, on the fact that if len([JjRest]; Len0) succeedsin the current program with answer constraint c then c is equivalent to c^Len0 > 0).De�nition 6.4.8 (Constraint Replacement) Let cl : H c1 2 ~B be a clause ofa program P and let c2 be a constraint. If, for each successful derivation true 2 ~B P;d 2, D j= 9�V ar(H) c1 ^ d $ 9�V ar(H) c2 ^ d

102 Chapter 6. Unfold/Fold Transformations of CLP Modulesholds, then replacing c1 by c2 in cl consists in substituting cl by H c2 2 ~B in P .2Constraint replacement has some similarities with the re�nement operation as de�nedby Marriott and Stuckey in [73]. Re�nement allows to add a constrain c to a programclause H c1 2 ~B, provided that (for a given set of initial queries of interest) forany answer constraint d of c1 2 ~B, D j= d! c holds, i.e. c is redundant in d. Clearlythis case is covered by our de�nition. However, the similarities between this chapterand [73] end here. In [73], re�nement, together with two other operations, is usedto de�ne an optimization strategy which manipulates exclusively the constraints ofthe clauses and which is devised to reduce the overhead of the constraint solver inpresence of the �xed left-to-right selection rule, thus providing a kind of optimizationtechnique totally di�erent from the one here considered.Example 6.4.2 (part 4) By performing a constraint replacement ofLen > 0 ^ Len = Len'+1 ^ Average*Len = Amount*Value+Sum'byLen > 0 ^ Len = Len'+1 ^ Average*Len = Amount*Value+Sum' ^ Len' > 0we can add the constraint Len0 > 0 to the body of clause c8, thus obtaining the clausec9: avl([hCurrency,Amounti,J|Rest], Rates, Average, Len) Len > 0 ^ Len = Len'+1 ^ Average*Len = Amount*Value+Sum'^ Len' > 0 2exchange rates(Rates).member(hCurrency, Valuei, Rates),weighted sum([J|Rest], Rates, Sum'),len([J|Rest], Len').As we said before, the applicability conditions for the constraint replacement oper-ations are satis�ed because each time that the query len([JjRest];Len0) succeeds inthe current program the variable Len0 is constrained to a value greater than zero. 2We are now ready for the folding operation. Intuitively, this operation can be seenas the inverse of unfolding. Here, we take advantage of this intuitive idea in orderto give a di�erent formalization of its applicability conditions which we hope will bemore easily readable than those existing in the literature.As in [96], the applicability conditions of the folding operations depend on the his-tory of the transformation, that is, on some previous programs of the transformationsequence. Recall that a transformation sequence is a sequence of programs obtainedby applying some operations of unfolding, clause removal, splitting, constraint re-placement and folding, starting from an initial program P0 which is partitioned intoPnew and Pold.As usual, in the following de�nition we assume that the folding and the foldedclause are renamed apart and, as a notational convenience, that the body of the

6.4. A transformation system for CLP 103folded clause has been reordered so that the atoms that are going to be folded arefound on its left hand side.De�nition 6.4.9 (Folding) Let P0; : : : ; Pi, i � 0, be a transformation sequence.Let alsocl : A cA 2 ~K; ~J be a clause in Pi,d : D cD 2 ~H be a clause in Pnew .If cA 2 ~K is an instance of true 2 ~H and e is a constraint such that V ar(e) �V ar(D) [V ar(cl), then folding ~K in cl via e consists of replacing cl bycl0 : A cA ^ e 2 D; ~Jprovided that the following three conditions hold:(CLP1) (i) \If we unfold D in cl0 using d as unfolding clause, then we obtain clback" (modulo '),or, equivalently,(ii) D j= 9�V ar(A; ~J; ~H) cA ^ e ^ cD $ 9�V ar(A; ~J; ~H) cA ^ (~H = ~K)(CLP2) \d is the only clause of Pnew that can be used to unfold D in cl0",that is,there is no clause b : B cB 2 ~L in Pnew such that b 6= d and cA ^ e ^ (D =B) ^ cB is D-satis�able.(CLP3) \No self-folding is allowed", that is(a) either the predicate in A is an old predicate;(b) or cl is the result of at least one unfolding in the sequence P0; : : : ; Pi. 2Here, the constraint e acts as a bridge between the variables of d and cl. For thisreason in the sequel we will often refer to it as bridge constraint.Conditions CLP1 and CLP2 ensure that the folding operation behaves, to someextent, as the inverse of the unfolding one; the underlying idea is that if we unfoldedthe atom D in cl0 using only clauses from Pnew as unfolding clauses, then we wouldobtain cl back. In this context condition CLP2 ensures that in Pnew there exists noclause other than d that can be used as unfolding clause.We now show that CLP1(i) and CLP1(ii) are equivalent to each other. Firstnotice that the folding and the folded clause are assumed to be standardized apart,so ~H has no variables in common with A, cA, ~K and ~J . From this and the fact thatcA 2 ~K is an instance of true 2 ~H, it follows that each solution of cA can be extendedto a solution of cA ^ (~H = ~K). Hencecl : A cA 2 ~K; ~J ' A cA ^ (~H = ~K) 2 ~K; ~JNow, because of the constraint ~H = ~K, in the rhs of the above formula, we also havethat cl ' A cA ^ (~H = ~K) 2 ~H; ~J (6.1)On the other hand, if we unfold cl0 using d as unfolding clause, as a result we get thefollowing clause: cl00 : A cA ^ e ^ (D = D0) ^ c0D 2 ~H 0; ~J

104 Chapter 6. Unfold/Fold Transformations of CLP Moduleswhere d0 : D0 c0D 2 ~H 0 is an appropriate renaming of d. Here, by the standardiza-tion apart and the fact that V ar(e) � V ar(D)[V ar(cl), the variables of cD; ~H whichdo not occur in D, do not occur anywhere else in this clause, so, by making explicit(D = D0), we can identify c0D with cD and ~H 0 with ~H. Therefore we have thatcl00 ' A cA ^ e ^ cD 2 ~H; ~J: (6.2)From (6.1) and (6.2) it follows immediately thatcl00 ' cl i� 9�V ar(A; ~J; ~H) cA ^ e ^ cD $ 9�V ar(A; ~J; ~H) cA ^ (~H = ~K)This proves that condition CLP1(i) is equivalent to CLP1(ii). Of course, the formeris more useful when we are transforming programs \by hand", while the latter is moresuitable for an automatic implementation of the folding operation.Here it is worth noticing that the folding clause is always found in P0 and usuallydoes not belong to the \current" program, therefore in practice \undoing" a fold viaan unfolding operation is usually not possible.Finally, we should mention that the purpose of CLP3 is to avoid the introductionof loops which can occur if a clause is folded by itself. This condition is the same onethat is found in Tamaki-Sato's de�nition of folding for logic programs.Example 6.4.2 (part 5) We can now foldexchange rates(Rates);sum([JjRest];Rates;Sum0); len([JjRest];Len0)in c9, using c2 as folding clause. In this case, the bridge constraint e has to beXS = [JjRest] ^ RATES = Rates ^ LEN = Len0 ^ AV = Sum0=Len0In the resulting program, after cleaning up the constraints, the predicate avl is de�nedby the following clauses:c7: avl([hCurrency,Amounti],Rates, Average, 1) Average = Amount*Value 2exchange rates(Rates),member(hCurrency, Valuei, Rates).c10: avl([hCurrency,Amounti,J|Rest], Rates, Average, Len) Len > 0 ^Len = Len'+1 ^ Average*Len = Amount*Value+(Average'*Len') ^ Len' > 0 2avl([J|Rest], Rates, Average',Len'),member(hCurrency, Valuei, Rates).Notice that, because of this last operation, the de�nition of avl is now recursive andit needs to traverse the list only once. Here, checkingCLP1 is a trivial task: what wehave to do is to unfold c10 using c2 as unfolding clause, and check that the resultingclause is '-equivalent to c9.Finally, in order to let also the de�nition of average enjoy of these improvements,we simply fold

6.4. A transformation system for CLP 105weighted sum(Xs; Rates; Sum);len(Xs;Len) in the body of c1, using c2 as foldingclause. The bridge constraint e is nowXs = XS ^ RATES = Rates ^ AV = Av ^ LEN = LenAnd the resulting clause is, after the cleaning-upc11: average(List, Av) Len>0 2 avl(List, Rates, Av, Len).Again, we could eliminate the constraint Len > 0 in the body of c11, by applyinga constraint replacement operation. In any case, the transformed version of theprogram AVERAGE, consisting of the clauses c11, c7, c10 together with the de�nitionof member, contains a de�nition of average which needs to scan the list only once. 2The transformation system given by the previous �ve operations is correct w.r.t.�, that is any transformed program together with a generic query Q will producethe same answer constraints of the original one. This is the content of the followingresult, which follows from the more general one contained in Section 6.5.Corollary 6.4.10 (Correctness) If P0; : : : ; Pn is a transformation sequence then(a) P0 � Pn:(b) The least D-models of P0 and Pn coincide.Proof. Statement (a) is proven in Section 6.5 as a Corollary of Theorem 6.5.4. Thefact that (a) implies (b) is proven in [42]. 2Invariance of the applicability conditionsAs previously mentioned, we often substitute a clause in a program by an ' equivalentone in order to clean up the constraints. The correctness of this operation wrt the�c congruence is stated in Lemma 6.3.7. We now show that this operation is correctalso in the sense that it does not a�ect the applicability and the result (up to ') ofthe previously de�ned operations. This is the content of the following proposition.Proposition 6.4.11 Let P0; : : : ; Pn and P �0 ; : : : ; P �n be two transformation sequences,such that, for i 2 [0 : : : n], Pi ' P �i . If Pn+1 is a program obtained from Pn via atransformation operation, then there exists a program P �n+1 which can be obtainedfrom P �n via the same transformation operation and such thatPn+1 ' P �n+1Proof. In case that the operation used to obtain Pn+1 from Pn was either an un-folding, a clause removal, a splitting, or a constraint replacement, this result followsimmediately from the operation's de�nitions, so we only have to take care of thefolding operation. We adopt the same notation used in De�nition 6.4.9, so we let- cl : A cA 2 ~K; ~J be the folded clause, in Pn,- d : D cD 2 ~H be the folding clause, in Pnew(� P0).- e be the bridge constraint, V ar(e) � V ar(D) [V ar(cl),

106 Chapter 6. Unfold/Fold Transformations of CLP Modules- cl0 : A cA ^ e 2 D; ~J be the result of the folding operation.Moreover, let- cl� : A� c�A 2 ~K�; ~J� be the clause of P �n corresponding to cl in Pn,- d� : D� c�D 2 ~H� be the clause of P �0 corresponding to d in P0.Now let e� be a constraint such that V ar(e�) � V ar(D�) [V ar(cl�) such that- cl�0 : A� c�A ^ e� 2 D�; ~J� ' cl0 : A cA ^ e 2 D; ~JWe now only have to show that if the applicability conditions of the folding operationare satis�ed (by cl, d and e) in Pn, then they are also satis�ed (by cl�, d� and e�) inP �n . To this end, the one delicate step is taken care of by the following Observation.Observation 6.4.12 Referring to the program Pn, the clauses cl and d, and the con-straint e.cA 2 ~K is an instance of true 2 ~H and (CLP1) holds i� cA 2 ~K is an instanceof cD 2 ~H and (CLP1) holds.Proof.\If". This is trivial, as if cA 2 ~K is an instance of cD 2 ~H then it is also aninstance of true 2 ~H.\Only if". The discussion after De�nition 6.4.9 shows that, if cA 2 ~K is aninstance of true 2 ~H and (CLP1) holds, then we have the following equivalences:cl : A cA 2 ~K; ~J 'A cA ^ (~H = ~K) 2 ~K; ~J 'A cA ^ (~H = ~K) 2 ~H; ~J 'A cA ^ e ^ cD 2 ~H; ~J:This implies that cA 2 ~K is an instance of cA ^ e ^ cD 2 ~H, which in turn is byde�nition an instance of cD 2 ~H. This concludes the proof of the Observation. 2This Observation shows that there is no loss of generality in modifying the applic-ability conditions of the folding operation De�nition 6.4.9 by replacing the condition\cA 2 ~K is an instance of true 2 ~H" for \cA 2 ~K is an instance of cD 2 ~H". Now,from the de�nitions of instance and of ' it is immediate to verify that the followingfacts hold:(1) If cA 2 ~K is an instance of cD 2 ~H then c�A 2 ~K� is an instance of c�D 2 ~H�.(2) if (CLP1) ^ (CLP2) ^ (CLP3) are satis�ed (by cl, d and e) in Pn, then theyare also satis�ed (by cl�, d� and e�) in P �n .This concludes the proof of the Proposition. 26.5 A transformation system for CLP modulesCorollary 6.4.10 shows the correctness of the transformation system when viewingeach CLP program as an autonomous unit. However, as pointed out in the introduc-tion, an essential requirement for programming-in-the-large is modularity: a program

6.5. A transformation system for CLP modules 107should be structured as a composition of interacting modules. In this framework Co-rollary 6.4.10 falls short from the minimal requirement since it does not guaranteethat a module P will be transformed into a congruent one P 0.Transforming CLP modules requires then a strengthening of (some of) the ap-plicability conditions given in the previous section. In what follows, we discuss suchmodi�cations considering the various operations one by one. Recall that the open pre-dicates of a module M are the ones speci�ed on Op(M). Similarly, in the sequel wecall open atoms those atoms whose predicate symbol belongs to Op(M). Moreover,we assume that the transformed version of a module has the same open predicates asthe original one.UnfoldingIn order to preserve the compositional equivalence, for the unfolding operation weneed the following additional applicability condition:(O1) The unfolding cannot be applied to an open atom.This condition is clearly needed, for instance, consider the module M0 consisting ofthe single clause fc1 : p q:g and where Op(M0) = fqg. Since M0 contains noclause whose head uni�es with q, unfolding q in c1 will return an empty moduleM1 = ;. Obviously M0 and M1 are not observationally congruent.Clause RemovalThis operation may be safely applied to modules without the need of any additionalcondition.SplittingBeing closely connected to the unfolding operation, the splitting one requires thesame kind of precautions when is applied to a modular program. Namely we needthe following condition:(O2) The splitting operation may not be applied to an open atom.The example used to show the need for condition O1 for the unfolding operation canbe applied here to demonstrate the necessity of O2.Constraint ReplacementThis operation is the most delicate one: in order to apply it to modules we need torestate completely its applicability conditions. As a simple example showing the needof such a change, let us consider the following module M0:c1: p(X) true 2 q(X).q(a).

108 Chapter 6. Unfold/Fold Transformations of CLP Moduleswhere Op(M0) = fqg. The only answer constraint to the query q(X) in M0 is X = a.Therefore, if we refer to the applicability conditions of De�nition 6.4.8, we could addthe constraint X = a to the body of c1 thus obtaining M1:c2: p(X) X=a 2 q(X).q(a).Once again M0 and M1 are not congruent. In fact, for N = hfq(b):g; fqgi, the queryp(b) succeeds in M0 � N and fails in M1 � N .De�nition 6.5.1 (Constraint Replacement for Modules) Let cl : H c1 2 ~Bbe a clause of a module M and let c2 be a constraint. If(O3) for each derivation true 2 ~B M; d 2 ~D such that ~D is either empty or containsonly open atoms, we have thatH c1 ^ d 2 ~D ' H c2 ^ d 2 ~Dthen replacing c1 by c2 in cl consists in substituting cl by H c2 2 ~B in M . 2In order to compare this de�nition with the corresponding one for non-modularprograms notice that the applicability conditions of De�nition 6.4.8 can be restatedas follows. We can replace c1 with c2 in the body of cl : H c1 2 ~B if, for eachsuccessful derivation true 2 ~B P; d 2 we have thatH c1 ^ d 2 ' H c2 ^ d 2Now it is clear that the di�erence lies in the fact that here we cannot just refer tothe successful derivations true 2 ~B P; d 2 , but we also have to take into accountthose partial derivations that end in a tuple of open atoms, whose de�nition couldeventually be modi�ed. It follows immediately that when the set of open atoms isempty, De�nitions 6.4.8 and 6.5.1 coincide, while if Op(M) 6= ; then this de�nitionis more restrictive than the previous one.FoldingFinally, we consider the folding operation. In order to preserve the compositionalequivalence the head of the folding clause cannot be an open atom. This is shown bythe following simple example. Consider the initial module M0:c1: p q.c2: r q.where we assume Op(M0) = fpg and Mnew = fp qg. Since r is an old atom, wecan fold q in c2 using c1 as folding clause. The resulting module M1 isc3: p q.c4: r p.

6.5. A transformation system for CLP modules 109Again M0 and M1 are not observationally congruent. Indeed, if we compose themwith the module N = hfp:g; fpgi, we have that the query r succeeds in M1 � N ,but fails in M0 � N . Since the new predicates are the only ones that can be usedin the heads of folding clauses, we can express this additional applicability conditionfor folding as follows:(O4) No open predicate is also a new predicate.It is worth noticing that open atoms may still be folded. Below (Example 6.4.2,part 6), we report an example of such a case.Using the additional applicability conditions introduced above, we can de�ne nowthe transformation sequence for CLP modules (for short, modular transformationsequence).De�nition 6.5.2 (Modular transformation sequence) Let M0 = hP0; Op(M0)ibe a module and P0, : : :, Pn be a transformation sequence. We say that M0; : : : ;Mnis a modular transformation sequence i� Mi = hPi; Op(M0)i for i 2 [0; n] and theconditions O1: : :O4 are satis�ed by all the operations used in P0; : : : ; Pn. 2As expected, for a modular transformation sequence we can prove a correctnessresult stronger than the one contained in Corollary 6.4.10. Indeed, the system trans-forms a module into a congruent one.This result is based on the following Theorem which contains the main technicalresult of this chapter and shows that any modular transformation sequence preservesthe resultants semantics.Theorem 6.5.3 Let M0; : : : ;Mn be a modular transformation sequence. Then� O(M0) = O(Mn).Proof. See the Appendix. 2From previous Theorem and the correctness result for the resultants semantics wecan now derive easily the correctness of a modular transformation sequence.Theorem 6.5.4 (Correctness of the modular transformation sequence) LetM0; : : : ;Mn be a modular transformation sequence, thenM0 �c MnProof. Immediate from Theorem 6.5.3 and Corollary 6.3.10. 2In other words, for any module N such that M0 � N is de�ned, Mn � N is alsode�ned3 and a generic query has the same answer constraints inM0�N and Mn�N .From previous result we also obtain Corollary 6.4.10 of previous Section.3The fact thatMn�N is also de�ned follows immediately from the fact that M0 andMn containde�nitions for the same predicate symbols.

110 Chapter 6. Unfold/Fold Transformations of CLP ModulesCorollary 6.4.10 If P0; : : : ; Pn is a transformation sequence, then,P0 � Pn:Proof. Note that when Op(P0) is empty, conditions O1 : : : O4 are trivially satis�edby any transformation sequence. Since � can be seen as the particular case of �capplied to modules with an empty set of open predicates, the thesis follows fromTheorem 6.5.4. 2Example 6.4.2 (part 6) Program AVERAGE can be used in a modular context.Indeed, if we consider that the exchange rates between currencies are typically uc-tuating ratios, it comes natural to assume exchange rates as an open predicatewhich may refer to some external \information server" to access always the most up-to-date information. In this context, it is easy to check that all the transformationswe performed satis�ed O1: : :O4. Therefore Theorem 6.5.4 guarantees that the �nalprogram will behave exactly as the initial one, even in this modular setting. 26.6 From LP to CLPIt is well-known that pure logic programming (LP for short) can be seen as a par-ticular instance of the CLP scheme obtained by considering the Herbrand constraintsystem. This is de�ned by taking as structure the Herbrand universe and interpretingas identity the only predicate symbol for constraints \=". So it is natural to expectthat an unfold/fold transformation for LP can be embedded into one for CLP. Indeed,in this Section we show that the transformation system we propose is a generalizationto the CLP (and modular) case of the unfold/fold system designed by Tamaki andSato [96] for LP, which is described in chapter 1. As a consequence, conditions O1and O4 can be used also in the LP case to transform a module into a congruent one.OCHO Since clause removal, splitting and constraint replacement are new operationswhich were not in [96], we call now LP transformation sequence a sequence of LPprograms P0; : : : ; Pn, in which P0 is an initial program and each Pi+1, is obtainedfrom Pi either via an unfolding or via a folding operation4.Concerning the unfolding operation, it is easy to see that De�nition 6.4.3 is theCLP counterpart of De�nition 3.2.3. In fact, an LP clause is itself a CLP rule(with an empty constraint) and well known results ([64]) imply that two terms sand t have an mgu i� the equation s = t is satis�able in the Herbrand constraintsystem. Therefore, given a logic program P , we can unfold P according to De�nition3.2.3 i� we can unfold P according to De�nition 6.4.3. Clearly, the results of thetwo operations are syntactically di�erent, since substitutions are used in the �rstcase whereas constraints are employed in the second one. However, again by usingstandard results of uni�cation theory, it is easy to check that the di�erent results are' equivalent.4However, we should mention that in [96] also a more general replacement operation is taken intoconsideration, but this operation is beyond the scope of this chapter.

6.6. From LP to CLP 111On the other hand, when considering the folding operation, the similarities betweenDe�nitions 3.2.5 and 6.4.9 are less immediate. Therefore we now formally prove that,whenever the folding operation for LP programs is applicable also the folding oper-ation for CLP programs is, and the result of this latter operation is '-equivalent tothe result of the operation in LP. This is summarized in the following.Theorem 6.6.1 If P0 is a logic program and P0; : : : ; Pn is an LP transformationsequence then there exists a CLP transformation sequence P �0 ; : : : ; P �n such that, fori 2 [0; n], Pi ' P �i .Proof. In order to simplify the notation, we now de�ne a simple mapping from LPclauses to clauses in pure CLP5. Let cl : p0(~t0) p1(~t1); : : : ; pn(~tn) be a clause inLP. Then �(cl) is the CLP clausep0(~x0) ~x0 = ~t0 ^ ~x1 = ~t1 ^ : : : ^ ~xn = ~tn 2 p1(~x1); : : : ; pn(~xn);where ~x0; : : : ; ~xn are tuple of new and distinct variables. Obviously �(cl) ' cl for anyclause cl. Therefore it su�ces to prove that if P0; : : : ; Pn is a transformation sequenceof logic programs, then �(P0); : : : ; �(Pn) is a transformation sequence in CLP. Theproof proceeds by induction on the length of the sequence. For the the base case(n = 0) the result holds trivially, so we go immediately to the induction step: weassume that P0; : : : ; Pn+1 is a transformation sequence in LP, that �(P0); : : : ; �(Pn)is a transformation sequence in CLP, and we now prove that �(P0); : : : ; �(Pn+1) is atransformation sequence in CLP as well.If Pn+1 is the result of unfolding a clause cl of Pi, then it is straightforward tocheck that by unfolding �(cl) in �(Pi) we obtain �(Pi+1) (modulo ').Now we consider the case in which Pn+1 is the result of a folding operation (appliedto Pn). We prove the thesis for the simpli�ed situation where ~H , ~K and ~J consisteach of a single atom. The extension to the general case is straightforward. Letd : a(~s) b(~t) be the folding clause, in Pnew .Since we are assuming that the applicability conditions of De�nition 3.2.5 are satis�ed,by F1 the folded clause (in Pn) can be written as follows:cl : c(~u) b(~t�); d(~v).the result of the folding operation is thencl0 : c(~u) a(~s�); d(~v).which is a clause in Pn+1.By translating the folding and the folded clause in CLP, we obtain�(d) � d� : a(~x) ~x = ~s ^ ~y = ~t 2 b(~y),�(cl) � cl� : c(~z) ~z = ~u ^ ~w = ~t� ^ ~k = ~v 2 b(~w); d(~k).Where ~x, ~y, ~z, ~w and ~k are tuples of new and distinct variables.Now, let e be the following constrainte � ~x = ~s�the result of the folding operation in CLP is then5Pure CLP programs are CLP programs in which the atoms in the clauses, apart from constraints,are always of the form p(~x), where ~x is a tuple of distinct variables.

112 Chapter 6. Unfold/Fold Transformations of CLP Modulescl0� : c(~z) ~z = ~u ^ ~w = ~t� ^ ~k = ~v ^ ~x = ~s� 2 a(~x); d(~k).It is straightforward to check that �(cl0) ' cl0�. Now, it is also clear that ~z = ~u ^ ~w =~t� ^ ~k = ~v 2 b(~w) is an instance of true 2 b(~y), so in order to prove the thesis wenow need to verify that if d, cl and � satisfy F1, F2 in Pn then d�, cl� and e satisfyCLP1 in �(Pn). Here the structure D is the Herbrand structure, whose domain isthe Herbrand universe and where \=" is interpreted as the identity.Now the condition CLP1 is D j= 9�~z;~y cleft $ 9�~z;~y crightwhere cleft is ~z = ~u ^ ~w = ~t� ^ ~k = ~v ^ ~x = ~s� ^ ~x = ~s ^ ~y = ~tand cright is ~z = ~u ^ ~w = ~t� ^ ~k = ~v ^ ~y = ~wIn both sides of the formula we �nd the equations ~w = ~t�; ~k = ~v; ~x = ~s� , where ~w; ~k; ~xare tuple of fresh variable and are existentially quanti�ed, hence we can simplifyCLP1 toD j= 9�~z;~y ~z = ~u ^ ~s = ~s� ^ ~y = ~t $ 9�~z;~y ~z = ~u ^ ~y = ~t� (6.3)Recall that, when considering the Herbrand structure, # is a solution of a constraintc if # is a grounding substitution such that Dom(#) = V ar(c) and D j= c#.We now show that for each solution � of one side of (6.3) there exists a solution�0 of the other side of (6.3) such that �j~z;~y = �0j~z;~y; this will imply the thesis.We now prove the two implications separately:(). Let � be a solution of ~z = ~u ^ ~y = ~t� . We assume that � is minimal, inthe sense that if l is a variable not occurring in ~z = ~u ^ ~y = ~t� , then l 62 Dom(�).Since, by standardization apart, Dom(�) \ Ran(�) = ;, we have thatDom(�) \Dom(�) =;. We can extend � to �0 Dom(�0) = Dom(�) [Dom(�): for each l 2 Dom(�), welet l�0 be equal to l��: (6.4)�0 is now also a solution of the left hand side of (6.3). In fact~s�0 = ~s�� (by (6.4))= ~s��0 (because �0 is an extension of �).Moreover~y�0 = ~t��0 (because �0 is an extension of �, and � is a solution of y = ~t�)= t�0 (by (6.4)).Since �0 is an extension of �, we have that �j~z;~y = �0j~z;~y.(!). Let � be a solution of ~z = ~u ^ ~s = ~s� ^ ~y = ~t. Again, we assume � to beminimal (in the sense above, i.e. Dom(�) = Var (~z = ~u ^ ~s = ~s� ^ ~y = ~t)). ObservethatDom(�) \Ran(�) = V ar(s�). We now extend � to �0 in such a way thatDom(�)encompasses the whole Ran(�) = V ar(t�) [V ar(s�). Let ~l be the tuple of variablesgiven by V ar(~t)nV ar(~s), by F2 we have that ~l� is a tuple of distinct variables.Moreover, the variables in ~l� don't occur anywhere else in the above formulas. So,for each li 2 ~l, we can let li��0 be equal to li�: (6.5)Since � is already a solution of ~s = ~s� and �0 is an extension of �, by (6.5) we havethat

6.7. Conclusions 113~t��0 = ~t�.Since � is a solution of ~y = ~t, �0 is then a solution of ~y = ~t� , and hence of the wholeLHS of (6.3), which concludes the proof. 2Theorem 6.6.1 allows us to apply the results of the previous Section also to theTamaki-Sato schema, thus obtaining a a transformation system for LP modules. Thefollowing Corollary show the correctness result for this case. Here we consider asLP module a logic program P together with a set of predicate symbols �. Modulecomposition and the related notions are the same as in the previous sections. Giventwo logic programs P1 and P2, the concept of observational equivalence�LP is de�nedas follows:� P1 �LP P2 i�, for any query Q and for any i; j 2 [1; 2], if Q has a computedanswer #i in the program Pi then Q has a computed answer #j in the programPj such that Q#i � Q#j6.Therefore, in the LP context, the concept of module congruence is de�ned as follows.Given two modules M1 and M2,� M1 �LPc M2 i� Op(M1) = Op(M2) and for every module N such that M1�Nand M2 �N are de�ned, M1 �N �LP M2 �N holds.Corollary 6.6.2 Let M0 : hP0; �i be a logic programming module, P0; : : : ; Pn bean LP transformation sequence and for i 2 [1; n] let Mi be the module hPi; �i. Ifconditions O1 and O4 are satis�ed then M0 �LPc Mn.Proof. Immediate from Theorems 6.6.1 and 6.5.4. 26.7 ConclusionsAmong the works on program's transformations, the most closely related to thischapter are Maher's [69] and the one of Bensaou and Guessarian [14].Maher considers several kind of transformations for deductive databases moduleswith constraints (allowing negation in the bodies of the clauses) and refers to theperfect model semantics. However, the folding operation proposed in [69] is quiterestrictive, in particular it lacks the possibility of introducing recursion. Indeed, forpositive programs, it is a particular case of the one de�ned here. Moreover, ournotion of module composition is more general than the one considered in [69], sincethe latter does not allow mutual recursion among modules.Recently, an extension of the Tamaki-Sato method to CLP programs has also beenproposed by Bensaou and Guessarian [14], yet there are some substantial di�erencesbetween [14] and our proposal.Firstly, since in an unfold/fold transformation sequence we allow more operations,we obtain a more powerful system. For instance, the transformation performed in6We assume here that generic mgu's are used in the SLD derivations. If only relevant mgu's wereallowed, then the syntactic equality should be replaced by variance.

114 Chapter 6. Unfold/Fold Transformations of CLP ModulesExample 6.4.2 is not feasible with the tools of [14]. On the other hand, since in [14]the authors de�ne also a goal replacement operation, there exist also some transform-ation which can be done with the tools of [14] and not with ours. However, sucha replacement operation cannot be �tted in a unfold/fold transformation sequence,in particular no folding is allowed when the transformation sequence contains a goalreplacement. For this reason a goal replacement operation as de�ned in [14] has to beregarded as an issue which is orthogonal to the one of the unfold/fold transformations,and which is also beyond the scope of this chapter.Secondly, the semantics they refer to is an extension to the CLP case of the C-semantics ([29, 40]). Such a semantics characterizes the logical consequences of theprogram on D-models, but does not allow to model answer constraints. For example,the C-semantics identi�es the programs f p(X,Y) X=a,Y=b 2:, p(X,Y).g andf fp(X,Y). g which have di�erent answer constraint for the goal p(X,Y), and con-sequently are not identi�ed by the answer constraint semantics in [43]. Since the C-semantics can be obtained as the upward closure of the answer constraint semantics,the result on the correctness of the unfold/fold system of [14] is a particular case of ourCorollary 6.4.10. Moreover, we believe that the answer constraints semantics providesa better reference semantics for transformation systems, since answer constraints arethe most natural properties that one would like to preserve while transforming pro-grams.A third relevant di�erence is due to the fact that since modularity is not take intoaccount in [14], the system introduced in that paper does not produce observationallycongruent programs. As pointed out in the introduction, this issue is particularlyrelevant for practical applications.Finally, one last improvement over [14] is that of the applicability conditions wepropose are invariant under '-equivalence (Proposition 6.4.11), while the ones in[14] are not: this means that in some cases the folding conditions of [14] may not besatis�able unless we appropriately modify the constraints of the clauses (maintaining'-equivalence).To conclude, the contributions of this chapter can be summarized as follows.We have de�ned a transformation system for CLP based on the unfold/fold frame-work of Tamaki and Sato for logic programs [96]. Here, the use of CLP allowed us tode�ne some new operations and to express the applicability conditions for the foldingoperation without the use of substitutions. Moreover, our de�nition of folding em-phasizes its nature of being a quasi-inverse of the unfolding. We hope that this willprovide a more intuitive explanation of its applicability conditions. The system isthen proven to preserve the answer constraints and the least D-model of the originalprogram.A de�nition of a modular transformation sequence is given by adding some furtherapplicability conditions. These conditions are shown to be su�cient to guarantee thecorrectness of the system w.r.t. the module's congruence. This means that thetransformed version of a CLP module can replace the original one in any context,yet preserving the computational behaviour of the whole system in terms of answerconstraints. As previously argued, this provides a useful tool for the development of

6.8. Appendix 115real software since it allows incremental and modular optimizations of large programs.Finally, the relations between transformation sequences for CLP and LP havebeen discussed. By mapping logic programs into CLP programs we have shown thatour transformation system is a generalization to CLP (and to modules) of the oneproposed by Tamaki and Sato [96]. This relation allows us to prove that, underconditions O1 and O4, the system by Tamaki and Sato transforms a LP module intoa congruent one.In the literature we also �nd less related papers presenting methods which focusexclusively on the manipulation of the constraint for compile-time [73] and for low-level local optimization (in which the constraint solving is partially compiled intoimperative statements) [56, 54]. These techniques are totally orthogonal to the onediscussed here, and can therefore be integrated with our method. On the otherhand, some strategies which use transformation rules for composing complex (pure)logic programs starting from simpler pieces have been presented in [62] and furtherdiscussed in [77]. Also these strategies could easily be extended to CLP and integratedwith our transformation rules.6.8 AppendixIn this Appendix we �rst give the proof of Theorem 6.5.3 which shows that anymodular transformation sequence preserves the resultants semantics. The proof, quitelong an tedious, is split in two parts (partial an total correctness) and is inspired bythe one given in [57].Throughout the Appendix we will adopt the following.Notation We refer to a �xed moduleM0 = hP0; Op(M0)iand to a �xed transformation sequenceM0 : : :Mn.Moreover, for notational convenience, we set� = Op(M0). 2Partial correctnessIntuitively, a transformation is called partially correct if it does not introduce newsemantic information. In our case, partial correctness corresponds to the inclusionO(M0) � O(Mn) of Theorem 6.5.3. Before proving such an inclusion we need toestablish some further notation.De�nition 6.8.1 We say that two trees T and T 0 are similar if they are partial treesof the same atom, and they have the same resultant, modulo '. 2This is (obviously) an equivalence relation, so we can also say that two treesbelong to the same equivalence class i� they are trees of the same atom, and theirresultants are equal, modulo '.

116 Chapter 6. Unfold/Fold Transformations of CLP ModulesThe next two Lemmata outline some simple properties of proof trees which willbe useful in the sequel. The �rst one states that, given a tree T , we can replace asubtree S with a similar subtree S 0, without altering the main properties of T .Lemma 6.8.2 Let T be an �-tree, S be a subtree of T , and S 0 be a partial prooftree similar to S and such that the clauses of S 0 do not share variables with T . Thenthe tree T 0 obtained from T by replacing S for S 0 is a �-tree and is similar to T .Proof. Straightforward. 2Lemma 6.8.3 Let T be a partial proof tree of A; let also T 0 be the tree obtainedfrom T by replacing A with A0 in the lhs of the label equation of the root node. If A0and A have the same relation symbol, and A0 is variable-disjoint from T , then T 0 isa partial proof tree of A0.Proof. Obvious. 2In other words, a partial proof tree for A is basically also a partial proof treefor any A0 that has the same relation symbol of A. Of course this Lemma gives noguarantee that after the substitution of A with A0, the global constraint of the treewill still be satis�able.We need a couple of �nal, preliminary results.Remark 6.8.4 Let P be a program and A d 2 ~D be an resultant. Equivalent are� There exists a derivation true 2 A P; d0 2 ~D0 such thatA d 2 ~D ' A d0 2 ~D0;� There exists a partial proof tree ofA in P whose whose resultant isA d00 2 ~D00and such that A d 2 ~D ' A d00 2 ~D00.Proof. Straightforward. 2Lemma 6.8.5 ([42]) Let P be a program, if, for distinct i; j 2 [1; k], there exists aderivation true 2 Ai P; ci 2 ~Fiand V ar(ci 2 ~Fi) \ V ar(cj 2 ~Fj) � V ar(Ai) \ V ar(Aj) then there also exist a de-rivation true 2 A1; : : : ; Ak P; c1 ^ : : : ^ ck 2 ~F1; : : : ; ~Fk: 2We can now state the partial partial correctness result the transformation system.Proposition 6.8.6 (Partial correctness) IfO(M0) = O(Mi) thenO(Mi) � O(Mi+1)Proof. To simplify the notation, here and in the sequel we refer to P1; : : : ; Pn ratherthat to M1; : : : ;Mn.In case Pi+1 was obtained from Pi by unfolding or by a clause removal operationthen the result is straightforward, therefore we need only to consider the remainingoperations.

6.8. Appendix 117We now show that if there exists an �-tree TA of atom A with resultant R in Pi+1,then there exists also �-tree of A with resultant R in Pi (modulo '). By Proposition6.3.17, this will imply the thesis. The proof is by induction on the size of a proof tree,which corresponds to the number of nodes it contains. Let cl0 be the label clause ofthe root node of TA, and let us distinguish various cases.Case 1: cl0 2 Pi.This is the case in which clause cl0 was not a�ected by the passage from Pi to Pi+1.The result follows then from the inductive hypothesis: For each subtree S of TA (inPi+1) there exists a similar subtree S 0 in Pi, so the tree obtained by replacing each Swith S 0 in TA is an �-tree in Pi similar to TA.Case 2: cl0 is the result of splitting.Let cl be the corresponding clause in Pi, that is, the clause that was split. There isno loss in generality in assuming that the atom that was split was the leftmost one.Therefore the situation is the following:- cl : A0 cA 2 A1; : : : ; An- cl0 : A0 cA ^ (A1 = B) ^ cB 2 A1; : : : ; AnWhere B cB 2 ~D is one of the splitting clauses, and has no variable in commonwith cl. Since by condition O2 no open atom can be split, we have that A1 maynot belong to the residual of TA, therefore there exist a subtree TA1 of TA which isattached to A1. Let C cC 2 ~E be the label clause of the root node of TA1 . Withthis notation the global constraint of TA has the form(A = A0) ^ cA ^ (A1 = B) ^ cB ^ (A1 = C) ^ cC ^ : : : (6.6)Now C cC 2 ~E is also one of the clauses used to split A1; by the applicabilityconditions of the splitting operation either C and B are heads (of renamings) ofthe same clause, or C = B ^ cC ^ cB is unsatis�able. Since (6.6) is satis�able, wehave that C and B must be renamings of the heads of the same clause. Since bystandardization apart, the variables in cB and in B may not occur anywhere else inTA, as far as global constraint of TA is concerned, the expression (A1 = B) ^ cBis already implied by the expression (A1 = C) ^ cC, therefore we can eliminate(A1 = B) ^ cB from the global constraint of TA, and obtain a tree which is similarto it; in other words, by replacing the clause clause cl0 with cl in the label of the rootof TA, we obtain a tree T 1A which is similar to TA.By inductive hypothesis, for each subtree TAi of TA (and T 1A) there exists a treeT 2Ai in Pi+1 which is similar to TA1. We can assume without loss of generality thatthe clauses in each T 2Ai do not share variables with those in T 1A.Finally, let T 2A be the tree obtained from T 1A by substituting each subtree TAi withT 2Ai , by Lemma 6.8.2 we have that T 2A is similar to T 1A, and therefore to TA. Since T 2Ais an �-tree of A in Pi, the result follows.Case 3: cl0 is the result of a constraint replacement. From now on, let us call internalconstraint of a tree T , the conjunction of all the constraints in the label clauses ofT , together with the label equations of the subtrees of T . So the internal constraintis obtained from the global constraint by removing from it the label equation of the

118 Chapter 6. Unfold/Fold Transformations of CLP Modulesroot node of T .Now, let- cl0 : A c0 2 A1; : : : ; An, and- cl : A c 2 A1; : : : ; An. Where cl is the clause to which the replacement wasapplied. Let also TA1 ; : : : ; TAn0 be the subtrees of TA (which we suppose attachedto A1; : : : ; An0), cA1 ; : : : ; cAn0 be their internal constraints and ~FA1; : : : ; ~FAn0 be theirresiduals. With this notation, the resultant of TA isA (A = A0) ^ c0 ^ cA1 ^ : : : ^ cAn0 2 ~FA1; : : : ; ~FAn0 ; An0+1; : : : ; AnBy Lemma 6.8.4, the existence of TA1; : : : ; TAn0 implies that for i 2 [1; n0] there existsa derivation true 2 Ai Pi+1; cAi 2 ~FAi (modulo '). Since by inductive hypothesis eachsubtree of TA has a similar subtree in Pi, Remark 6.8.4 also implies that, for i 2 [1; n0]there exists a derivation which is equal (modulo ') totrue 2 Ai Pi; cAi 2 ~FAi:By combining these derivations together (Remark 6.8.5) we have that there exists aderivationtrue 2 A1; : : : ; An Pi; ~cA1 ^ : : : ^ cAn0 2 ~FA1 ; : : : ; ~FAn0 ; An0+1; : : : ; An: (6.7)Now, since cl 2 Pi it follows that there exists a derivationtrue 2 A Pi; (A = A0) ^ c ^ cA1 ^ : : : ^ cAn0 2 ~FA1 ; : : : ; ~FAn0 ; An0+1; : : : ; An:From Remark 6.8.4 it follows that there exists an �-tree SA of A in Pi whose resultantis A (A = A0) ^ c ^ cA1 ^ : : : ^ cAn0 2 ~FA1 ; : : : ; ~FAn0 ; An0+1; : : : ; An:From (6.7) and the applicability conditions for the replacement operations it followsthat the resultant of SA is '-similar to the one of TA. Hence the thesis.Case 4: cl0 is the result of folding.Let- cl : A0 cA 2 B�1 ; : : :B�m; A1; : : : ; An be the folded clause (in Pi)- d : B0 cB 2 B1; : : : ; Bm be the folding clause (in Pnew),so we have that- cl0 : A0 cA ^ e 2 B0; A1; : : : ; An is the label clause of the root node of TA;Let also- B0; A1; : : : ; An0 be the atoms of cl0 that have an immediate subtree (in Pi+1)attached to in TA; this choice causes no loss of generality, in fact, by O4, B0 cannotbe an �-atom, and hence it cannot be part of the residual of the root node of TA.- An0+1; : : : ; An is then the residual of the root node.So let- TB0; TA1; : : : ; TAn0 be the immediate �-subtrees of TA.By the inductive hypothesis, there exist �-trees

6.8. Appendix 119- T 0B0; T 0A1; : : : ; T 0An0 in Pi which are similar to TB0; TA1; : : : ; TAn0 .Since O(P0) = O(Pi), from Proposition 6.3.17 it follows that there exists an �-treeSB0 of B0 in P0 which is similar to T 0B0 (in Pi). Because of the condition CLP2, thelabel clause of the root of SB0 is an appropriate renaming of d. Let- d� : B�0 c�B 2 B�1; : : : ; B�m be the label clause of the root node of SB0, and- B0 = B�0 is then the label equation of the root of SB0.Moreover, let- SB�1 ; : : : ; SB�m0 be its immediate subtrees (in P0), which we suppose to be attachedto B�1 ; : : : ; B�m0- B�m0+1; : : : ; B�m is then the residual of its root node.Let T 2A be the �-tree in Pi+1 [Pi [P0 obtained from TA by replacing its subtreesTB0; TA1; : : : ; TAn0 with SB0; T 0A1; : : : ; T 0An0 and let R2 be its resultant. Since we canassume without loss of generality that the clauses in the subtrees SB0; T 0A1; : : : ; T 0An0do not share variables with each other and with the clauses in TA, by Lemma 6.8.2we have that R ' R2 (6.8)Now let us write out explicitly the resultant of R2, so let- crest be the constraint given by the conjunction of all the global expressions ofT 0A1 ; : : : ; T 0An0 , together with the internal constraint of SB�1 ; : : : ; SB�m0 ;- ~F be the (multiset) union of the residuals of T 0A1; : : : ; T 0An0 ; SB�1 ; : : : ; SB�m0 ;-B�1 = C1; : : : ; B�m0 = Cm0 be the label equations of the root nodes of SB�1 ; : : : ; SB�m0 ;We have that R2 = A ctot 2 ~F ;B�m0+1; : : : ; B�m; An0+1; : : : ; An, where ctot is(A = A0) ^ cA ^ e ^ (B0 = B�0) ^ c�B ^ (^m0j=1B�j = Cj) ^ crestBy CLP1, this reduces to(A = A0) ^ cA ^ (B�0 = B0) ^ (^mj=1B�j = Bj) ^ (^m0j=1B�j = Cj) ^ crest (6.9)Now we show that we can drop the constraint B�0 = B0. First notice that sinceB�0 is a renaming of B0, then B�0 = B0 can be reduced to a conjunction of equationsof the form x = y, where x and y are distinct variables. In the case that for somex, y, B�0 = B0 implies x = y, then we have that either x = y is already implied bythe constraint (^mj=1B�j = Bj) or the variables x and y do not occur anywhere else in(6.9), nor in R2. So (6.9) becomes(A = A0) ^ cA ^ (^mj=1B�j = Bj) ^ (^m0j=1B�j = Cj) ^ crest (6.10)On the other hand, by replacing B�j with B�j in the lhs of the label equations ofthe root nodes of the trees SB�1 ; : : : ; SB�m0 , we obtain the trees SB�1 ; : : : ; SB�m0 , which,by Lemma 6.8.3, are �-trees of B�1 ; : : : ; B�m0 . Now let T 3A be the �-tree of A in Pi [P0which is constructed as follows:- cl is the label clause of its root

120 Chapter 6. Unfold/Fold Transformations of CLP Modules- its immediate subtrees are SB�1 ; : : : ; SB�m0 (in P0) and T 0A1; : : : ; T 0An0 (in Pi).Then the residual of T 3A is preciselyA c3tot 2 ~F;B�m0+1; : : : ; B�m; An0+1; : : : ; An, wherec3tot is cA ^ (^mj=1B�j = Bj) ^ (^m0j=1B�j = Cj) ^ crestBy this, (6.10) and (6.8), we have that T 3A is similar to TAFinally, since O(P0) = O(Pi), each of the trees SB�j (in P0) has a similar treein Pi, by replacing each SB�j with it in T 3A, obtaining T 4A by Lemma 6.8.2 and theusual assumption on the variables of the clauses in the SB�j 's, T 4A is similar to T 3A,and hence to TA, Since T 4A is a tree in Pi, this proves the thesis. 2Total correctnessWe say that a transformation sequence is complete, if no information is lost duringit, that is O(M0) � O(Mi). When a transformation sequence is partially correct andcomplete we say that it is totally correct. Before entering in the details of the proofof total correctness, we need the following simple observation.Remark 6.8.7 If cl is a clause of Pi that does not satisfy condition CLP3 then thepredicate in the head of cl is a new predicate, while the predicates in the atoms inthe body are old predicates. 2The proof of the completeness is basically done by induction on the weight of atree, which is de�ned by the following.De�nition 6.8.8 (weight)� The weight of an �-tree T , w(T), is de�ned as follows:{ w(T) = size(T)� 1 if the predicate of A is a new predicate;{ w(T) = size(T) if the predicate of A is an old predicate.� The weight of a pair (atom, resultant), (A;R), w(A;R), is the minimum of theweights of the �-trees of A in P0, that have R as resultant. (modulo '). 2In the proof we also make use of trees which have for label clause of their root aclause of Pi but that for the rest are trees of P0. In particular we need the following.De�nition 6.8.9 We call a tree T of atom A, descent tree in Pi [P0 if� the clause label of its root node cl, is in Pi;� Its immediate subtrees T1; : : : ; Tk are trees in P0;� if T1; : : : ; Tk are trees of A1; : : : ; Ak and R1; : : : ; Rk are their resultants, then(a) w(A;R) � w(A1; R1) + : : :+ w(Ak; Rk);(b) w(A;R) > w(A1; R1) + : : :+ w(Ak; Rk) if cl satis�es CLP3. 2The above de�nition is a generalization of the de�nition of descent clause of [57].De�nition 6.8.10 We call Pi weight complete i� for each atom A and resultant R,if there is an �-tree of A in P0 with resultant R, then there is a descent tree of Awith resultant '-equivalent to R in Pi [P0. 2

6.8. Appendix 121So Pi is weight complete if we can actually reconstruct the resultants semanticsof P0 by using only descent trees in Pi [P0.We can now state the �rst part of the completeness result.Proposition 6.8.11 If Pi is weight complete, then O(M0) � O(Mi).Proof.We now proceed by induction on atom-resultant pairs ordered by the followingwell-founded ordering �: (A;R) � (A0; R0) i�� w(A;R) > w(A0; R0); or� w(A;R) = w(A0; R0), and the predicate of A is a new predicate, while the oneof A0 is an old one.Let A, R, be an atom and a resultant such that there exist an �-tree of A in P0 withresultant R. Since Pi is weight complete, there exist descent tree TA of A in Pi [P0with resultant R. Let also- cl : A0 cA 2 A1; : : :An (in Pi) be the label clause of its root,- A1; : : : ; An0 be those atoms of cl that have an immediate subtree attached to- TA1 ; : : : ; TAn0 be the immediate subtrees of TA (in P0) and RA1 ; : : : ; RAn0 be theirresultants.Then, since TA is a descent tree,w(A;R) � w(A1; RA1) + : : :+ w(An0; RAn0).Now if w(A;R) > w(A1; RA1) + : : :+ w(An0; RAn0), then (A;R) � (Aj; RAj). Other-wise, if w(A;R) = w(A1; RA1) + : : :+ w(An0; RAn0). by condition (b) on the descenttree, we have that cl doesn't satisfyCLP3, by Remark 6.8.7, this implies that the pre-dicate of A is a new predicate, while the predicates in A1; : : : ; An0 are old predicates.By the de�nition of �, this implies that (A;R) � (Aj; RAj).Hence, by the inductive hypothesis, there exist �-trees T 00A1 ; : : : ; T 00An0 of A1; : : : ; An0in Pi whose resultants are RA1 ; : : : ; RAn0 (modulo '). As usual we assume that theclauses in the T 00Ai 's do not share variables with each other and with those in TA. ByLemma 6.8.2 the tree T 00A, obtained from TA by replacing each subtree TAj with T 00Aj ,is an �-tree of A in Pi with resultant R. This proves the Proposition. 2We we are now ready to prove our total correctness Theorem.Theorem 6.5.3 (Total Correctness) Let M0 = hP0; Op(M0)i be a module andM0; : : : ;Mn be a modular transformation sequence. Then� O(M0) = O(Mn).Proof. We will now prove, by induction on i, that for i 2 [0; n],� O(M0) = O(Mi),� Pi is weight complete.Base case. We just need to prove that P0 is weight complete.Let A be an atom, and R be a resultant such that there is an �-tree of A in P0 withresultant R. Let T be a minimal �-tree of A in P0 having R as resultant. T obviouslysatis�es the condition (a) of De�nition 6.8.9. Let cl be the label clause of the root ofT , notice that cl satis�es CLP3 i� its head is an old atom, just like the elements of

122 Chapter 6. Unfold/Fold Transformations of CLP Modulesits body. From the De�nition of weight 6.8.8 and the minimality of T , it follows thatcondition (b) in De�nition 6.8.9 is satis�ed as well.Induction step.We now assume thatO(P0) = O(Pi), and that Pi is weight complete.From Propositions 6.8.6 and 6.8.11 it follows that if Pi+1 is weight complete thenO(P0) = O(Pi+1). So we just need to prove that Pi+1 is weight complete.Let A be an atom, and R be a resultant such that there is an �-tree of A in P0 withresultant R. since Pi is weight complete, there exists a descent tree TA of A in Pi [P0with resultant R.Let cl : A0 cA 2 A1; : : : An be the label clause of its root. Let us assumethat A1; : : : ; An0 are the atoms of cl that have an immediate �-subtree attached toin TA, let TA1 ; : : : ; TAn0 be the immediate subtrees of TA and let RA1; : : : ; RAn0 betheir resultants. By Lemma 6.8.2 there is no loss in generality in assuming thatTA1 ; : : : ; TAn0 are the minimal �-trees of A1; : : : ; An0 in P0 that have RA1 ; : : : ; RAn0 asresultants.We now show that there exists a descent tree of A with resultant R (modulo ')in Pi+1 [P0. We have to distinguish various cases, according to what happens to theclause cl when we move from Pi to Pi+1.Case 1: cl 2 Pi+1.That is, cl is not a�ected by the transformation step. Then TA is a descent tree of Awith resultant R in Pi+1 [P0.Case 2: cl is unfolded.There is no loss in generality in assuming that A1 is the unfolded atom. In fact, byO1, the unfolded atom cannot be an �-atom, so it cannot belong to the residual ofTA.Now, since Pi is weight complete, there exist a descent tree TB0 of A1 in Pi [P0,with clause d : B0 cB 2 B1; : : : ; Bm (in Pi) as label clause of the root, that hasthe same resultant (modulo ') of TA1.Let T 0A be the partial tree obtained from TA by replacing TA1 with TB0. T 0A isan �-tree of A in Pi [P0; let R0A be its resultant, by Lemma 6.8.2 and the usualassumption on the variables in the clauses of the subtrees, we have thatR ' R0A (6.11)Let TB1; : : : ; TBm0 be the immediate subtrees of TB0, which we suppose attached toB1; : : : ; Bm0, let also RB1 : : : RBm0 be their resultants. By Lemma 6.8.2 there is noloss in generality in assuming that TB1; : : : ; TBm0 are the smallest trees of P0 in theirequivalence class.Let crest be the conjunction of the global constraints of TB1; : : : ; TBm0 ; TA1; : : : ; TAn0 ,and ~F be the multiset union of their residuals; we have thatR0A ' A (A = A0) ^ cA ^ (A1 = B0) ^ cB ^ crest 2 ~F;Bm0+1; : : : ; Bm; An0+1; : : : ; An(6.12)Since A1 is the unfolded atom, d is one of the unfolding clauses, it follows that oneof the clauses of Pi+1 resulting from the unfold operation is the following clause:

6.8. Appendix 123cl0 : A0 cA ^ (A1 = B0) ^ cB 2 B1; : : : ; Bm; A2; : : : ; AnNow consider the �-tree T 00A of A which is built as follows:- cl0 is the label clause of the root.- TB1; : : : ; TBm0 ; TA2; : : : ; TAn0 are its immediate subtrees.Its resultant is thenR00 = A (A = A0) ^ cA ^ (A1 = B0) ^ cB ^ crest 2 ~F;Bm0+1; : : : ; Bm; An0+1; : : : ; AnBy (6.11) and (6.12) we have that the resultant of T 00A is R (modulo ').Now, in order to prove that T 00A is a descent tree, we have to prove that conditions (a)and (b) in De�nition 6.8.9 are satis�ed.Noww(A;RA) � w(A1; RA1) + : : :+ w(An0; RAn0) (since TA is a descent tree),� w(B1; RB1) + : : :+w(Bm0 ; RBm0) + w(A2; RA2) + : : :+ w(An0; RAn0) (since TA1is a descent tree)Moreover, if d satis�es CLP3 then, by condition (b) in De�nition 6.8.9.w(A1; RA1) > w(B1; RB1) + : : :+ w(Bm0; RBm0)On the other hand if d does not satisfy CLP3, then by Remark 6.8.7 the predicateof B0 and A1 must be a new predicate; again, by Remark 6.8.7 we have that cl mustsatisfy CLP3. It follows thatw(A;RA) > w(A1; RA1) + : : :+ w(An0; RAn0)So, in any case, we have thatw(A;RA) > w(TB1) + : : :+ w(TBm0) + w(TA2) + : : :+ w(TAn0)This proves that T 00A is a descent tree.Case 3: cl is removed from Pi via a clause removal operation.This simply cannot happen: the constraint of cl is a component of the global con-straint of TA and since the latter is satis�able, so is the �rst one. Therefore cl cannotbe removed from Pi.Case 4: cl is split.Since no �-atom can be split, the split atom may not belong to the residual of TA,therefore there is no loss in generality in assuming that A1 is the split atom and thatn0 � 1.Since O(P0) = O(Pi), we have that for i 2 [1; n0] there exist an �-tree SAiof Ai in Pi, which is similar to TAi. Let SA be the �-tree obtained from TA bysubstituting its subtrees TA1; : : : ; TAn0 with SA1 ; : : : ; SAn0 . From Lemma 6.8.2 and theusual standardization apart of the clauses in the subtrees, it follows that SA is an�-tree of A in Pi and that SA is similar to TA.Now let hA1 = B0 ; d : B0 cB 2 B1; : : : ; Bmi be the label of the root of SA1.With this notation, the resultant of TA (and SA) has the formA (A = A0) ^ cA ^ (A1 = B0) ^ cB ^ crest 2 Residual (6.13)Since d is a clause of Pi it was certainly used to split A1 in Pi. Therefore in Pi+1 we�nd the clause

124 Chapter 6. Unfold/Fold Transformations of CLP Modules- cl0 : A0 cA ^ (A1 = B�0) ^ c�B 2 A1; : : : ; AnWhere d� : B�0 c�B 2 B�1; : : : ; B�m is a renaming of d. Here there in no loss ingenerality in assuming that the variables of d� do not occur anywhere else in thetrees considered so far. Now, let T 0A be the �-tree of A in Pi+1 [P0 obtained bysubstituting cl with cl0 as label clause of the root of TA. From (6.13) it follows thatthe resultant of T 0A is (' equivalent to)A (A = A0) ^ cA ^ (A1 = B0) ^ cB ^ (A1 = B�0) ^ c�B ^ crest 2 ResidualSince d� is a renaming of d, and since its variables do not occur anywhere else inT 0A, in the above formula the subexpression (A1 = B�0) ^ c�B is already implied by thefact that the expression contains (A1 = B0) ^ cB, and therefore it may be removedfrom the constraint. So, from (6.13) it follows that T 0A is similar to TA. Now, in orderto prove the thesis we only need to prove that T 0A is a descent tree, that is, that itsatis�es conditions (a) and (b) of De�nition 6.8.9, but this follows immediately fromthe fact that the subtrees of TA and T 0A are the same ones (and TA is a descent tree)and the fact that cl0 satis�es CLP3 i� cl does.Case 5: The constraint of cl is replaced.The �rst part of this proof is similar to the one of the previous case. Since O(P0) =O(Pi), we have that for i 2 [1; n0] there exist an �-tree SAi of Ai in Pi, whichis similar to TAi. Let SA be the �-tree obtained from TA by substituting its sub-trees TA1; : : : ; TAn0 with SA1 ; : : : ; SAn0 . From Lemma 6.8.2 and the usual standard-ization apart of the subtrees it follows that SA is an �-tree of A in Pi and thatSA is similar to TA.Let cA1 ; : : : ; cAn0 be the internal constraints of SA1 ; : : : ; SAn0 and ~FA1; : : : ; ~FAn0 betheir residuals. With this notation, the resultant of TA (and SA) isA (A = A0) ^ cA ^ cA1 ^ : : : ^ cAn0 2 ~FA1 ; : : : ; ~FAn0 ; An0+1; : : : ; AnRecall that by the assumption that the trees are standardized apart, for distincti; j 2 [1; n], we have that V ar(cAi 2 ~FAi) \ V ar(cAj 2 ~FAj) � V ar(Ai) \ V ar(Aj).Then, from the existence of SA1 ; : : : ; SAn0 and from Remarks 6.8.4 and 6.8.5 it followsthat there exist a derivationA1; : : : ; An Pi; cA1 ^ : : : ^ cAn0 2 ~FA1; : : : ; ~FAn0 ; An0+1; : : : ; An:Now, let the result of the constraint replacement operation be the clause- cl0 : A0 c0A 2 A1; : : : ; An.From the applicability conditions of the constraint replacement operation it followsthat the resultantA0 (A = A0) ^ cA ^ cA1 ^ : : : ^ cAn0 2 ~FA1; : : : ; ~FAn0 ; An0+1; : : : ; An; '(6.14)A0 (A = A0) ^ c0A ^ cA1 ^ : : : ^ cAn0 2 ~FA1 ; : : : ; ~FAn0 ; An0+1; : : : ; An;Now, let T 0A be the tree obtained from TA by replacing the clause label if its root, cl,with cl0. Its resultant isA (A = A0) ^ c0A ^ cA1 ^ : : : ^ cAn0 2 ~FA1 ; : : : ; ~FAn0 ; An0+1; : : : ; An

6.8. Appendix 125And from (6.14) it follows that T 0A is similar to TA.Now, in order to prove the thesis we only need to prove that T 0A is a descent tree,that is, that it satis�es conditions (a) and (b) of De�nition 6.8.9, but this followsimmediately from the fact that the subtrees of TA and T 0A are the same ones (and TAis a descent tree) and the fact that cl0 satis�es CLP3 i� cl does.Case 6: cl is folded.Let fA1 = C1; : : : ; An0 = Cn0g be the label equations of the root nodes of TA1 ; : : : ; TAn0 ,let also crest be the conjunction of the remaining internal equations (label equations+ clause constraints) of TA1; : : : ; TAn0 ; �nally, let ~F be the residual of TA1 ; : : : ; TAn0 .We have thatR ' A (A = A0) ^ cA ^ (^n0j=1Aj = Cj) ^ crest 2 ~F;An0+1; : : : ; An: (6.15)Now let the folding clause (in Pnew) bed : B0 B1; : : : ; BmThere is no loss in generality in assuming that there exists an index k such thatAk; : : : ; Ak+m are the unfolded atoms, so for j 2 [1;m], Ak+j and Bj are uni�ableatoms. The result of the folding operation is thencl0 : A0 cA ^ e 2 A1; : : : Ak; B0; Ak+m+1; : : :An0Now notice that of the atoms of cl that are going to be folded, Ak+1; : : : ; An0 are theones that have an immediate subtree attached to in TA, These atoms correspond toB1; : : : ; Bn0�k in d, (we should also consider explicitly the cases all have or have nota subtree attached to, that is, the cases in which n0 < k or n0 � m+ k, however theseare easy corollaries of the general case, so we now assume that k � n0 < m+ k).Now let TB0 be the �-tree of B0 in P0 built as follows:- d0 : B00 c0B 2 B 01; : : : ; B 0m (an appropriate renaming of d) is the label clause ofits root node,- B0 = B 00 is then the label equations of its root node,- TB01; : : : ; TB0n0�k are its immediate subtrees, which are obtained, as explained inLemma 6.8.3, from the trees TAk+1; : : : ; TAn0 by replacing Ak+j with B 0j in the lhs ofthe label equations of their root nodes.- B 0n0�k+1; : : : ; B 0m is consequently the residual of its root node.Finally, let T 00A be the �-tree of A in Pi+1 [P0 which is built as follows:- cl0 is the label clause if its root (and this is a clause in Pi+1).- TA1 ; : : : ; TAk�1; TB0 are its immediate subtrees (in P0).Let R00 be its resultant, we have thatR00 = A ctot 2 ~F;B 0n0�k+1; : : : ; B 0m; Ak+m+1; : : : ; An (6.16)where ~F is the (multiset) union of the residuals of TA1; : : : ; TAk�1; TB0 and ctot is(A = A0) ^ cA ^ e ^ (B0 = B00) ^ c0B ^ (^kj=1Aj = Cj) ^ (^n0j=k+1B0j�k = Cj) ^ crestBy CLP1 this becomes:(A = A0) ^ cA ^ (B0 = B 00) ^ (^mj=1Bj = B 0j) ^ (^kj=1Aj = Cj) ^ (^n0j=k+1B0j�k = Cj) ^ crest(6.17)

126 Chapter 6. Unfold/Fold Transformations of CLP ModulesAs we did in Proposition 6.8.6, we now show that we can drop the constraint B0 = B 00.First notice that since B 00 is a renaming of B0, then B0 = B 00 can be reduced to aconjunction of equations of the form x = y, where x and y are distinct variables.So suppose that for some x, y, B0 = B 00 implies that x = y, then either x = y isalready implied by the constraint (^mj=1Bj = B 0j), or the variables x and y do notoccur anywhere else in (6.17), nor in R00.Thus ctot can be rewritten as follows:(A = A0) ^ cA ^ (^mj=1Bj = B 0j) ^ (^kj=1Aj = Cj) ^ (^n0j=k+1B0j�k = Cj) ^ crestBy making explicit the constraint (^mj=1Bj = B 0j) and comparing the result with(6.15) we see that T 00A is an �-tree of A in Pi+1 [P0 with resultant R (modulo ').We now need only to prove that T 00A is a descent tree, that is, that it satis�es theconditions (a), (b) of the De�nition 6.8.9.Let RB0 be the resultant of TB0. Since d is the folding clause, the predicate of B0must be a new predicate, while the predicates of B1 : : : Bm have to be old predicates.Moreover, by condition CLP2, any proof tree of B0 in P0 whose global constraint isconsistent with ca ^ e must have (a renaming of) d as label clause of the root. ByDe�nition 6.8.8 we then have thatw(B0; RB0) � w(TB1) + : : :+ w(TBn0�k) (6.18)Moreover, for j 2 [1; n0 � k], w(TAk+j) = w(TBj), and, since TA is a descent tree andthe clause of its root node satis�es CLP3, by De�nition 6.8.8 we have thatw(A;R) > w(A1; RA1) + : : :+ w(An0; TRn0)= w(A1; RA1) + : : :+ w(Ak; RAk) + w(Ak+1; RAk+1) + : : :+ w(An0 ; RAn0)= w(A1; RA1) + : : :+ w(Ak; RAk) + w(TAk+1) + : : :+ w(TAn0) (by the minimalityof the TAj)= w(A1; RA1) + : : :+w(Ak; RAk) +w(TB1) + : : :+w(TBn0�k) (by the de�nition ofTBj)� w(A1; RA1) + : : :+ w(Ak; RAk) + w(B0; RB0) (by (6.18)).Thus T 00A satis�es conditions (a) and (b) of De�nition 6.8.9. 2

Chapter 7The Replacement Operation for CLPModules
In this chapter we study the replacement transformation for Constraint Logic Pro-gramming modules. We de�ne new applicability conditions which guarantee the cor-rectness of the operation also wrt module's composition: under this conditions, theoriginal and the transformed modules have the same observable properties also whenthey are composed with other modules. The applicability conditions are not bound toa speci�c notion of observable. Here we consider three distinct such notions: two ofthem are operational and are based on the computed constraints; the third one is thealgebraic one based on the least model. We show that our transformation method canbe applied in any of these distinct contexts, thus providing a parametric approach.7.1 IntroductionCentral to the development of large and e�cient applications is now the study ofoptimization techniques for programs and modules. Concerning speci�cally the CLPparadigm, the literature on this subject can be divided into two main branches.On one hand we �nd methods which focus exclusively on the manipulation of theconstraint for compile-time [73] and for low-level local optimization (in which theconstraint solving may be partially compiled into imperative statements) [56]. Com-pile time optimizations based on static analysis have also been investigated [72]. Onthe other hand there are techniques such as the unfold/fold transformation systems,which were developed initially for Logic Programs [96] and then applied to CLP in[69, 14] and in chapter 6 of this thesis. These latter methods focus primarily on thedeclarative side of the program.Replacement is a program transformation technique exible enough to encompassboth the above kind of optimization: it can be pro�tably used to manipulate boththe constraint and the \declarative" side of a CLP program. In fact the replacementoperation, which was introduced in the �eld of Logic Programming by Tamaki andSato [96] and later applied to CLP in [69, 14], syntactically consists in replacing a127

128 Chapter 7. The Replacement Operation for CLP Modulesconjunction of atoms in the body of a program clause by another conjunction. It istherefore a very general operation and it is able to mimicmany other transformations,such as thinning, fattening [18] and folding (see [77] for a survey on transformationtechniques for logic languages).Clearly, a primary requirement a transformation operation should satisfy is cor-rectness: the original and the transformed program should be equivalent wrt to some(operational or declarative) reference semantics. In the logic programming area, alot of research [96, 67, 47, 88, 20, 69, 14, 32, 80] has been devoted to the de�nitionof applicability conditions su�cient to guarantee the correctness of replacement wrtseveral di�erent semantics. Unfortunately, apart from [69], none of these transform-ation systems can be correctly applied to modules. In fact, since they all refer tosemantics which are not compositional wrt �, they provide correctness results whichare adequate only if programs are seen as stand alone units. As we already explainedOCHO in chapter 6, when we transform a module M into M 0 we don't just want M andM 0 to have the same behavior: we want them semantically equivalent whatever isthe context in which we use them. In other words we need some further applicabilityconditions which guarantee that, given any other module Q, M �Q and M 0�Q willbe equivalent to each other. When this condition is satis�ed we say that M and M 0are compositionally equivalent or congruent1.Furthermore, even when restricting to the non modular setting, the applicabilityconditions so far provided for the replacement transformations su�er from drawbackswhich, in our opinion, prevented a wider di�usion of the operation. On one hand, someof them [47, 88, 67, 69] do not allow replacement to introduce recursion, which, as wewill shortly see, is an important feature for optimizing Constraint Logic Programs.On the other hand, other approaches [96, 20, 80] do exploit the full potentiality ofreplacement, but at the price of applicability conditions which are discouraginglycomplicated.In this chapter we study optimizations based on the replacement operation forCLP modules. We provide some natural and relatively simple applicability conditionswhich ensure us that the transformed program is compositionally equivalent to theoriginal one. Our approach is based on the following two requirements:(i) The replacing conjunction must be equivalent to the replaced one (in a sensewhich enforces compositional equivalence). This is already the point where wedepart from previous approaches: the equivalences used so far to relate thereplacing and the replaced part are not su�cient to guarantee the preservationof compositional equivalence.(ii) The replacement must not introduce (fatal) loops.Here, we call a loop fatal if it prevents the computation from ending successfully.Indeed, the equivalence of the replacing and the replaced part alone is notsu�cient to guarantee that the replacement is correct. We individuate twosituations in which the operation certainly does not introduce any fatal loop:1Of course, depending on which observable property of computation we consider, di�erent in-stances of congruence can be obtained.

7.1. Introduction 129(a) When the replacing conjunction is at least as e�cient as the replaced one.Referring to the operational semantics this means that each timewe can computean \answer" constraint c for the replaced conjunction (in the given program)in n steps, we can also compute the answer c for the replacing one in m stepswith m � n. This is undoubtedly a desirable situation which �ts well in thenatural context in which the transformation is performed in order to increaseprogram's execution speed. Moreover, this condition is exible enough to allowus to introduce recursion (which can be seen as an example of non-fatal loop)in the de�nition of the predicates.(b)When the replacing conjunction is independent from the clause that is goingto be transformed.This clearly guarantees that no loops are introduced.The advantages of this approach to the replacement operation are twofold.Firstly, our method is parametric wrt the semantic properties of the program wewant to maintain along the transformation. We consider here three such observableproperties: two of them are operational, as they are based on the result of the the com-putations (the computed answer constraints), while the third one is a logical notion(the least model on the relevant algebraic structure). Depending on which propertywe refer to, we can naturally instantiate the generic notion of equivalence relativeto the requirement (i) above and obtain applicability conditions which guarantee thepreservation of the desired properties.Secondly, as we said, our approach allows us to obtain compositionally equivalentprograms. We can then transform independently the components of an applicationand successively combine together the results while preserving the original meaning ofthe program. This is also useful when a program is not completely speci�ed in all itsparts, as it allows us to optimize on the available modules. Moreover, the equivalencementioned in (i) can be simply modi�ed to match the \degree" of modularity wedesire. Results for the non-modular cases are then obtained as easy corollaries.This chapter is organized as follows. In Section 7.2 we state the applicabilityconditions needed to obtain compositionally equivalent programs, wrt the answerconstraints notion of observable, and we present the main correctness result. InSection 7.3 we illustrate the optimization technique based on replacement through asimple example. Section 7.4 shows how the applicability conditions can be modi�ed(weakened) when we refer to other semantic properties of modules. Section 7.5 con-cludes by comparing our results to those contained in some related papers. Someproofs are deferred to the Appendix.PreliminariesThe notations and the necessary preliminary notions are given in the previous chapter,sections 6.2 and 6.3. The only di�erence is that in this chapter we'll use a slightlymore restrictive form of �=-equivalence: given two clauses having the same head,cl1 : A c1 2 ~B1 and cl2 : A c2 2 ~B2. We say that cl1 is similar to cl2, cl1 ' cl2,i� for i; j 2 [1; 2], for any D-solution # of ci there exists a D-solution of cj such

130 Chapter 7. The Replacement Operation for CLP Modulesthat ~Bi# and ~Bj are equal as multisets. Notice that, as opposed to de�nition 6.3.6here we also require that two clauses, in order to be similar, must have exactly thesame heads (this will simplify the proofs).7.2 Operational correctness of ReplacementAs previously discussed, the replacement operations consists simply in replacing aconjunction of atoms in the body of a program clause by another conjunction. Clearly,some applicability conditions are necessary in order to ensure the correctness of theoperation.In this section we �rst de�ne an operational notion of correctness based on theanswer constraints. Then we provide some applicability conditions for replacementin form of a natural formalization of the requirements (i) and (ii) discussed in theintroduction. Then we show that, whenever these conditions are satis�ed, the replace-ment operation is operationally correct. Later, in Section 7.4, we will also show howthese conditions can be modi�ed (weakened) when considering correctness based ondi�erent operational and logical notions.Operational congruenceTo de�ne formally the notion of operational correctness we �rst provide the de�nitionof module's operational congruence. This concept allows us to identify those moduleswhich have the same operational behavior in any �-context, (this is why it is actuallya congruence relation, wrt the � operator).First, we extend the equivalence ' to derivations.De�nition 7.2.1 Let P , P 0 be two programs, � : c 2 ~C P; b 2 ~B and �0 : c 2 ~C P 0;b0 2 ~B0 be two derivations starting in the same goal. Let also ~x = V ar(c 2 ~C). Wesay that � is similar to �0, � ' �0,i� q(~x) b 2 ~B ' q(~x) b0 2 ~B0, where q is any (dummy) predicate symbol2. 2This concept allows us to give the de�nition of operational congruence. Recallthat a refutation is a derivation that ends in a goal with an empty body.De�nition 7.2.2 (Operational Congruence) Let M1 and M2 be CLP modulesthat have the same set of open predicates. We say thatM1 and M2 are operationally congruent, M1 �O;M2,i�, for every module N such that M1 �N and M2 �N are de�ned, we have that foreach refutation in M1�N there exists a similar refutation in M2�N and vice-versa.2 2We use the notation based on q as a shorthand: indeed, according to the de�nition of ', thismeans that for for any D-solution # of b there exists a D-solution #0 of b0 such that # and #0 coincideon the set ~x and the multisets ~B# and ~B0#0 are equal, and vice-versa.

7.2. Operational correctness of Replacement 131Accordingly, we say that a transformation is operationally (totally) correct i� itmaps modules into operationally congruent ones.We now give a result which provides a condition su�cient to guarantee the op-erational congruence of two modules. Here, and in the sequel, given a set of pre-dicate symbols � we call a �-derivation any derivation c 2 ~C ; b 2 ~B such thatPred(~B) � �.Theorem 7.2.3 [42] Let M1 = hP1; �i and M2 = hP2; �i be two modules. If� for each �-derivation in M1 there exists a similar �-derivation in M2then, for every module M such that M1 �M and M2 �M are de�ned, we have thatfor any refutation in M1 �M there exists a similar refutation in M2 �M . 2Partial correctnessIn order to give the applicability conditions for the replacement operation, we startwith requirement (i): we want the replacing conjunction to be equivalent to thereplaced one. To this end, we provide the following de�nition of query's equivalence.Here and in the following we say that a derivation � is renamed apart wrt a set ofvariable ~x if all the clauses used in � are variable disjoint with ~x.De�nition 7.2.4 (Query's operational equivalence) LetM = hP; �i be a mod-ule, c1 2 ~C1 and c2 2 ~C2 be two queries and ~x be a tuple of variables. Then we saythat c1 2 ~C1 is O-equivalent to c2 2 ~C2 under ~x in Mi� for each �-derivation ci 2 ~Ci P; bi 2 ~Bi, renamed apart wrt ~x, there exists aderivation cj 2 ~Cj P; bj 2 ~Bj, renamed apart wrt ~x such that q(~x) bi 2 ~Bi 'q(~x) bj 2 ~Bj, where i; j 2 [1; 2], i 6= j and q is any (dummy) predicate symbol3.2 The idea behind the above de�nition, and which distinguishes it from all theprevious approaches, is that in a modular context we cannot just refer to refutations,but we also have to take into account those partial derivations that end in a tupleof open atoms, whose de�nition could eventually be modi�ed. Notice that the largeris the set of open predicates we consider, the stronger becomes the de�nition ofequivalence. Indeed, having more open predicates implies that the derivations weconsider are more likely to be inuenced by the adjoining of external de�nitions.As we informally mentioned in the introduction, when we replace c 2 ~C by d 2 ~Din the clause cl : A c 2 ~C; ~E, our �rst requirement will be the equivalence of c 2 ~Cand d 2 ~D under V ar(A; ~E) in M . We now show that if this requirement is satis�edthen the operation is at least partially correct. This is the content of the following.Theorem 7.2.5 (Partial Correctness) Let cl : A c 2 ~C; ~E be a clause in themodule M : hP; �i and M 0 : hP 0; �i be the result of replacing c 2 ~C by d 2 ~D in cl.So P 0 = Pnfclg [fcl0 : A d 2 ~D; ~Eg. If3The condition on clauses used in the derivation is needed to avoid variable name clashes.

132 Chapter 7. The Replacement Operation for CLP Modules� d 2 ~D is O-equivalent to c 2 ~C under V ar(A; ~E) in M ,then for each �-derivation �0 in M 0 there exist a similar �-derivation � in M .Proof. Here, as well as in the proof of some other theorems that will follow, someequations will be labeled with the special sign y. We do this because we are alsogoing to refer to such equations also in the sequel, however, as far as this proofis concerned, these labels are of no relevance. First, we need to state a couple ofpreliminary results. The proof of the �rst one is immediate, and thus it is omitted.Claim 7.1 Let P be a program, and c 2 ~C be a query. Then, for any n, there exists aderivation c 2 ~C P; d 2 ~D of length n i� there exists a derivation true 2 ~C P; d0 2 ~Dof length n such that(i) d � c ^ d0(ii) the variables that d0 2 ~D and c have in common are a subset of the variablesof ~C. 2Claim 7.2 [42] Let P be a program, and c1 ^ c2 2 ~C1; ~C2 be a query. Then, thereexists a derivation c1 ^ c2 2 ~C1; ~C2 P; d 2 ~D of length n i� there exist two derivations�1 : c1 2 ~C1 P; d1 2 ~D1 and �2 : c2 2 ~C2 P; d2 2 ~D2 such that(i) ~D � ~D1; ~D2, and d � d1 ^ d2 is satis�able,(ii) the variables that �1 and �2 have in common are exactly those that c1 2 ~C1 andc2 2 ~C2 have in common,(iii) j�1j+ j�2j = n. 2We can now continue with the proof of the Theorem, so let �0 be a �-derivationin M 0. We have to show that there exists a derivation � in M which is similar to�0. For this we proceed by induction on the length of the derivation. The base case,j�0j = 0, is trivial, as the derivations of length zero are (by de�nition) the ones of theform b 2 ~B M 0; b 2 ~B. Therefore we proceed with the inductive step. By Claims 7.1and 7.2, �0 can be chosen of the form�0 : true 2 H M 0; b 2 ~B:Where ~B contains only �-atoms, and where (since this derivation has length greaterthan 0) we can assume that Var(H) \ Var(~B) = ;. By the de�nition of derivation,there has to exist a (renaming of a) clause of M 0,J cL 2 ~L (7.1)and a �-derivation � 0 : (H = J) ^ cL 2 ~L M 0; b 2 ~B:Where j�0j = j� 0j+ 1. By the inductive hypothesis, there exists a derivation � inM such that � ' � 0 y. Now, if the clause of (7.1) was also a clause of M (that is,

7.2. Operational correctness of Replacement 133if it was not a result of the transformation), then there would exist a derivation �in M such that � ' �0 y, concluding the proof. So we have to consider the case inwhich J cL 2 ~L 2 M 0nM ; in this situation, J cL 2 ~L is exactly (a variant of)the clause cl0 : A d 2 ~D; ~E. By appropriately renaming all the variables in theclauses and the derivations considered so far, we can assume that � 0 is exactly thederivation � 0 : (H = A) ^ d 2 ~D; ~E M 0; b 2 ~B:By Claim 7.2, there exist two derivations � 01 and � 02 such that� 01 : d 2 ~D M 0; b1 2 ~B1;� 02 : (H = A) 2 ~E M 0; b2 2 ~B2;b � b1 ^ b2 and ~B � ~B1; ~B2; (7.2)j� 01j+ j� 02j = j� 0j = j�0j � 1;Var(b1 2 ~B1) \ Var(b2 2 ~B2) � Var(d 2 ~D) \ Var((H = A) 2 ~E):Here and in the sequel, we make the following assumption:Assumption 7.2.6 Each time we consider a new clause or a new derivation, the vari-ables that the new expression has in common with the ones previously mentioned areonly the ones that are strictly necessary.By the inductive hypothesis, there exist two derivations �1 and �2 in M , such that�1 : d 2 ~D M 0; b�1 2 ~B�1;�2 : (H = A) 2 ~E M 0; b�2 2 ~B�2;�1 ' � 01 y and �2 ' � 02 y; (7.3)Var(b�1 2 ~B�1) \ Var(b�2 2 ~B�2) � Var(d 2 ~D) \ Var((H = A) 2 ~E): (7.4)Since d 2 ~D is equivalent to c 2 ~C under Var(A; ~E) in M , it follows that there existsa derivation �3 : c 2 ~C M; b3 2 ~B3such that for any dummy predicate symbol q, if we let ~x = Var(A; ~E),q(~x) b1 2 ~B1 ' q(~x) b3 2 ~B3: (7.5)Here there is no loss in generality in assuming that the variables of b3 2 ~B3 which donot occur in d 2 ~D, also do not occur in the derivations considered so far. So, byClaim 7.2, we can put together �3 and �2, and obtain the derivation�4 : (H = A) ^ d 2 ~D; ~E M 0; b3 ^ b�2 2 ~B3; ~B�2:Since in M we �nd the clause cl : A c 2 ~C; ~E, by the de�nition of derivation thereexists a derivation � which uses only clauses of M and which is similar totrue 2 H M; b3 ^ b�2 2 ~B3; ~B�2:

134 Chapter 7. The Replacement Operation for CLP ModulesSince the variables that b3 2 ~B3 has in common with the rest of this expression arecertainly contained in Var(A; ~E), from (7.2), (7.3) and (7.5) it follows that � ' �0 y.Hence the thesis. 2Combined with Theorem 7.2.3, this Theorem shows that, when its hypothesis aresatis�ed, for every module N such that M �N and M 0�N are de�ned and for eachrefutation in M 0�N there exists a similar refutation in M �N . In other words, thatthe transformation has not added to the program any extra semantic information.Notice also that in the above Theorem we assume that when we perform thereplacement, then we always substitute the whole constraint of the clause with a newone. This is obviously no restriction: if in the clause A b ^ c 2 ~C; ~E we wantto replace c 2 ~C with d 2 ~D, then we can always say that we are actually replacingb ^ c 2 ~C with b ^ d 2 ~D, in fact if the conditions of the above Theorem are satis�edin the �rst case, they are also satis�ed in the latter.An immediate consequence of Theorem 7.2.5 is the following simple Corollarywhich characterizes the situations in which we have total correctness.Corollary 7.2.7 Let cl : A c 2 ~C; ~E be a clause of the module M : hP; �i, andM 0 : hP 0; �i be the result of replacing c 2 ~C with d 2 ~D in cl. So P 0 = Pnfclg [fcl0 :A d 2 ~D; ~Eg. If c 2 ~C is O-equivalent to d 2 ~D under Var(A; ~E) in M then� M �O M 0 i� c 2 ~C is equivalent to d 2 ~D under V ar(A; ~E) in M 0.Proof.()). It is easy to see that if c 2 ~C is O-equivalent to d 2 ~D under Var(A; ~E) inM and M �O M 0 then c 2 ~C is also O-equivalent to d 2 ~D under Var(A; ~E) in M 0.((). By Theorem 7.2.5 we have that each �-derivation in M 0 has a similar �-derivation in M 0. Now M can be re-obtained from M 0 by replacing back d 2 ~D byc 2 ~C. Since by hypothesis c 2 ~C is also O-equivalent to d 2 ~D under Var(A; ~E)in M 0, from Theorem 7.2.5 we also have that each �-derivation in M has a similar�-derivation in M 0, therefore, by Theorem 7.2.3 M �O M 0. 2Roughly speaking, the previous Corollary states that the operation is operationallycorrect if the replacing and the replaced conjunctions are operationally equivalentboth in the initial and the resulting program. Of course this result requires someknowledge of the the semantics of the resulting program and therefore cannot beused as an applicability condition for the replacement operation: for that purposewe want conditions which are based solely on the semantic properties of the initialprogram. To this is devoted the rest of this section.Total correctnessWhen we replace c 2 ~C by d 2 ~D in the clause cl : A c 2 ~C; ~E, the equivalence ofc 2 ~C and d 2 ~D under V ar(A; ~E) in M is not su�cient to guarantee total correct-ness, as there may be computations which can be done in the original moduleM , butnot in the transformed on M 0. In fact, when ~D depends on the modi�ed clause the

7.2. Operational correctness of Replacement 135replacement can introduce a loop thus a�ecting the total correctness. This is shownby the following classical counter-example.Example 7.2.8 Let hP; ;i be the module consisting of the following clauses.cl: q r.r.In this case both q and r succeed with empty computed answer, so they they areactually equivalent to each other (under any set of variables). However, if we replacer with q in the body of cl we obtaincl': q q.r.which is by no means congruent to the previous module. In fact we have introduceda loop and p and q do not succeed any longer. 2Now we propose two methods for guaranteeing that no \fatal" loops are intro-duced. These methods formalize the requirement (ii) we mentioned in the introduc-tion. The �rst one is the most complex but in our opinion is also the most useful forprogram's optimization. It is based on the following De�nition.De�nition 7.2.9 (Not Slower) Let M = hP; �i be a module, c1 2 ~C1 and c2 2 ~C2be two queries and ~x be a tuple of variables. Then we say thatc2 2 ~C2 is O-not-slower than c1 2 ~C1 under ~x in Mi� for each �-derivation �1 : c1 2 ~C1 P; b1 2 ~B1, renamed apart wrt ~x, there existsa derivation �2 : c2 2 ~C2 P; b2 2 ~B2, renamed apart wrt ~x such that j�2j � j�1j andthat q(~x) b1 2 ~B1 ' q(~x) b2 2 ~B2, where q is any (dummy) predicate symbol4.2 We are now ready to state our �rst result on total correctness.Theorem 7.2.10 (Correctness I) Let cl : A c 2 ~C; ~E be a clause in the moduleM : hP; �i and M 0 : hP 0; �i be the result of replacing c 2 ~C by d 2 ~D in cl. SoP 0 = Pnfclg [fcl0 : A d 2 ~D; ~Eg. If� d 2 ~D is O-equivalent to and� O-not-slower than c 2 ~C under V ar(A; ~E) in Mthen M �O M 0.Proof. For practical reasons, we now divide the proof in two parts: the �rst oneis the counterpart of the �rst part of the proof of Theorem 7.2.5, and will also bereferred to in the proof of Theorem 4.7.Part 1. By Theorem 7.2.5 it follows that each �-derivation �0 in M 0 there is aderivation � in M such that �0 ' � y, therefore, by Theorem 7.2.3, in order to provethe thesis we have to show that also the converse holds, that is, that for each �-derivation � in M there is a derivation �0 in M 0 such that � ' �0 y. With no further4Again, the condition on clauses used in the derivation is needed to avoid variable name clashes.

136 Chapter 7. The Replacement Operation for CLP Modulese�ort we'll show that in this situation we can always �nd a �0 such that j�j � j�0j.This will be used to prove Corollary 7.2.12.We proceed by induction on the length of the derivation. Let � be a �-derivationin M .Base case j�j = 0. This case is trivial, as the derivations of length zero are theones of the form b 2 ~B M; b 2 ~B.Inductive step. By Claims 7.1 and 7.2, � can be chosen of the form� : true 2 H M; b 2 ~Bwhere ~B contains only �-atoms, and where (since this derivation has length greaterthan 0) we can assume that Var(H) \ Var(~B) = ;. By the de�nition of derivation,there has to exist a (renaming of a) clause of M ,J cL 2 ~L (7.6)and a �-derivation � : (H = J) ^ cL 2 ~L M; b 2 ~Bwhere j�j = j�j + 1. By the inductive hypothesis, there exists a derivation � 0 inM 0 such that � ' � 0 y and that j�j � j� 0j. Now, if the clause of (7.6) was also a clauseof M 0 (that is, if it was not a�ected by the transformation), then there would exista derivation �0 in M 0 such that � ' �0 y, and that j�j � j�0j concluding the proof.So we have to consider the case in which J cL 2 ~L 2 MnM 0; in this situation,J cL 2 ~L is exactly (a variant of) the clause cl : A c 2 ~C; ~E. By appropriatelyrenaming all the variables in the clauses and the derivations considered so far, we canassume that � is exactly the derivation� : (H = A) ^ c 2 ~C; ~E M; b 2 ~B:By Claims 7.2, there exist two derivations �1 and �2 such that�1 : c 2 ~C M; b1 2 ~B1;�2 : (H = A) 2 ~E M; b2 2 ~B2;b � b1 ^ b2 and ~B � ~B1; ~B2; (7.7)j�1j+ j�2j = j�j = j�j � 1;Var(b1 2 ~B1) \ Var(b2 2 ~B2) � Var(c 2 ~C) \ Var((H = A) 2 ~E):Here, like in the proof of 7.2.5 we follow Assumption 7.2.6, so the variables that eachnew expression has in common with the ones previously mentioned are only the onesthat are strictly necessary.Part 2. So, by the fact that d 2 ~D is equivalent to and not-slower than c 2 ~C underVar(A; ~E) in M , it follows that there exists a derivation�3 : d 2 ~D M; b3 2 ~B3

7.2. Operational correctness of Replacement 137such that j�3j � j�1j, and that for any dummy predicate symbol q, if we let ~x =Var(A; ~E), q(~x) b1 2 ~B1 ' q(~x) b3 2 ~B3 (7.8)Here there is no loss in generality in assuming that the variables of b3 2 ~B3 which donot occur in d 2 ~D, also do not occur in the derivations considered so far. So, byClaims 7.2, we can put together �3 and �2, and obtain the derivation�4 : (H = A) ^ d 2 ~D; ~E M; b3 ^ b2 2 ~B3; ~B2:Here we obviously have that:Observation 7.2.11 The variables that b3 2 ~B3 has in common with the rest of thisexpression are certainly contained in Var(A; ~E).Moreover,the following holds: j�4j = j�3j+ j�2j � j�1j+ j�2j = j�j = j�j�1. Therefore,by the inductive hypothesis, there exists a derivation � 0 : (H = A) ^ d 2 ~D; ~E M 0;b03 ^ b02 2 ~B03; ~B02 such that �4 ' � 0 y and j�4j � j� 0j (7.9)Since in M 0 we �nd the clause cl0 : A d 2 ~D; ~E, by the de�nition of derivationthere exists a derivation �0 : true 2 H M 0; b03 ^ b02 2 ~B3;0 ~B02. From (7.7), Observation7.2.11, (7.8), and (7.9) it follows that � ' �0 y and that j�j � j�0j. Hence the thesis. 2Note that that d 2 ~D is (operationally) not-slower than c 2 ~C in M if computingan answer for d 2 ~D in M , under any �-context, never requires more iterations thatcomputing the corresponding answer for c 2 ~C. Clearly, this means that the de�nitionof d 2 ~D is at least as e�cient as the one of c 2 ~C. Therefore, the requirementof the above theorem, namely that the replacing conjunction has to be not-slowerthan the replaced one, �ts well in a context where transformation operations areintended to increase the performances of programs. Indeed, it is easy to show that,when the hypothesis of the above theorem are satis�ed, then the resulting module is(computationally) at least as e�cient as the initial one. This is the content of nextCorollary.Corollary 7.2.12 Let M and M 0 be modules. Suppose that M 0 was obtained fromM by applying a replacement operation in which the conditions of theorem 7.2.10were satis�ed. Then for each �-derivation � in M there exists a similar �-derivation�0 in M 0 such that �0 is not longer than �.Proof. It is included in the proof of Theorem 7.2.10. 2The second and maybe easiest method we propose for ensuring that no fatalloops are introduced by the replacement, is to require that no predicate symbol in~D depends on the predicate symbol in the head of cl. In this case no loop can beintroduced at all. For this we need the following formal notion of dependency.

138 Chapter 7. The Replacement Operation for CLP ModulesDe�nition 7.2.13 (Dependency) Let P be a program, p and q be relations. Wesay that p refers to q in P i� there is a clause in P with p in the head and q inthe body. We say that p depends on q in P i� (p; q) is in the reexive and transitiveclosure of the relation refers to. 2We can now state our second result on total correctness.Theorem 7.2.14 (Correctness II) Let cl : A c 2 ~C; ~E be a clause of the mod-ule M : hP; �i, and M 0 : hP 0; �i be the result of replacing c 2 ~C by d 2 ~D in cl. SoP 0 = Pnfclg [fcl0 : A d 2 ~D; ~Eg. If� c 2 ~C is O-equivalent to d 2 ~D under V ar(A; ~E) in M and� no predicate in ~D depends on Pred(A) in Mthen M �O M 0. 2Proof. The �rst part of the proof is identical to Part 1 of the proof of Theorem 4.3,so we just refer to it, and proceed with the second part.Part 2b. So, by the fact that d 2 ~D is equivalent to c 2 ~C under Var(A; ~E) in M ,It follows that there exists a derivation�3 : d 2 ~D M; b3 2 ~B3such that for any dummy predicate symbol q, if we let ~x = Var(A; ~E),q(~x) b1 2 ~B1 ' q(~x) b3 2 ~B3: (7.10)Since the atoms in d 2 ~D are independent from cl, the clauses used in �3 are alsoclauses of M 0, so in M 0 there exists a derivation � 03, which is identical to �3, � 03 :d 2 ~D M 0; b3 2 ~B3. Moreover, since j�2j < j�j, by the inductive hypothesis there existsa derivation � 02 such that � 02 : (H = A) 2 ~E M 0; b02 2 ~B02;�2 ' � 02 y: (7.11)By Claim 7.2 we can put together � 02 and � 03 and obtain the derivation� 04 : (H = A) ^ d 2 ~D; ~E M 0; b3 ^ b02 2 ~B3; ~B02:Since in M 0 we �nd the clause cl0 : A d 2 ~D; ~E, by the de�nition of derivationthere exists a derivation �0 which uses only clauses of M 0 and which is similar totrue 2 H M 0; b3 ^ b02 2 ~B02; ~B3:Since the variables that b3 2 ~B3 has in common with the rest of this expression arecertainly contained in Var(A; ~E), from (7.7), (7.10) and (7.11) it follows that � ' �0 y.Hence the thesis. 2

7.3. An Example 1397.3 An ExampleIn this section we show what kind of optimizations can be achieved via replacementthrough a worked example. In particular, we'll show that, under the given applic-ability conditions, replacement allow us to introduce recursion in the de�nition ofpredicates. For this we employ a transformation strategy which is typically used inunfold/fold systems such as the one in [96]. Indeed, the applicability conditions wewill give are general enough to let replacement mimic most of the transformationsfeasible with the tools of [96]. One advantage of replacement over folding is that theapplicability conditions for the former refer solely to the (semantic) properties of theprogram we are working on, while for folding these depend also on the history of thetransformation (that is, on the transformation steps previously performed). In anycase, to the replacement operation there is muchmore than just mimicking the foldingone, since the replacing and the replaced conjunction can be totally independent fromeach other.The following example is a simpli�ed version of the one used in chapter 6.Example 7.3.1 (Computing an average) Consider the following CLP(<)5 pro-gram AVERAGE computing the average of the values in a list. Values may be givenin di�erent currencies, for this reason each element of the list contains a term of theform hCurrency; Amounti. The applicable exchange rates may be found by callingthe predicate exchange rates, which will return a list containing terms of the formhCurrency; Exchange Ratei, where Exchange Rate is the exchange rate relative toCurrency. As we already mentioned in chapter 6, despite its simplicity, this is a typ-ical program that can be used in a modular context. Indeed, if we consider that theexchange rates between currencies are typically uctuating ratios, it comes naturalto assume exchange rates as an open (or imported) predicate, which may refer tosome external information server to access always the most up-to-date information.average(List, Av) Av is the average of the list Listc1: average(Xs, Av) Len > 0 ^ Av*Len = Sum 2exchange rates(Rates),weighted sum(Xs, Rates, Sum),len(Xs, Len).weighted sum(List, Rates, Sum) Sum is the sum of the values in the list Listwhere each value is multiplied by the exchange rate corresponding to its currencyweighted sum([], 0).weighted sum([hCurrency, Amounti | Ts], Rates, Sum) 5CLP(<) [55] is the CLP language obtained by considering the constraint domain< of arithmeticover the real numbers. The signature for < contains the constant symbols 0 and 1, the binary functionsymbols + and �, and the binary predicate symbols +; <;� for constraints which are interpretedon the real numbers as usual.

140 Chapter 7. The Replacement Operation for CLP ModulesSum = Amount*Value + Sum' 2member(hCurrency, Valuei, Rates),weighted sum(Ts, Rates, Sum').len(List, Len) Len is the length of the list Listlen([], 0).len([H|Ts], Len) Len = Len'+1 2 len(Ts, Len').Notice that the de�nition of average needs to scan the list Xs twice. This is asource of ine�ciency that can be �xed via unfolding and replacement operations. Thetransformation strategy which we are going use use is often referred to as tupling [77]or as procedural join (see [62]). First, we introduce a new predicate w sum and lende�ned by the following clausec2: w sum and len(XS, RATES, SUM, LEN) 2exchange rates(RATES),weighted sum(XS, RATES, SUM),len(XS, LEN).w sum and len reports the weighted sum of the values in XS, together with the lengthof Xs itself and the list of the exchange rates. Notice that w sum and len, as it isnow, needs to traverse the list Xs twice as well. We start to transform AVERAGE byunfolding both weighted sum(XS, RATES, SUM) and len(XS, LEN) in the body ofc2. This operations yield the module AV1 which contains the following two clauses:c3: w sum and len([], Rates, 0, 0) 2 exchange rates(Rates).c4: w sum and len([hCurrency,Amounti|Rest], Rates, Sum, Len) Len = Len'+1 ^ Sum = Amount*Value+Sum' 2exchange rates(Rates),member(hCurrency, Valuei, Rates),weighted sum(Rest, Rates, Sum'),len(Rest, Len').From the correctness of the unfolding operation it follows that AVERAGE � AV1.Now, we can replace exchange rates(Rates), weighted sum(Rest, Rates, Sum'),len(Rest, Len') by w sum and len(Rest, Rates, Sum', Len') in the body ofc4. In the resulting module AV2, after cleaning up the constraints67, the predicatew sum and len is de�ned by the following clauses:c3: w sum and len([], Rates, 0, 0) 2 exchange rates(Rates).c5: w sum and len([hCurrency,Amounti|Rest], Rates, Sum, Len) 6Since all the semantic properties we refer to are invariant under ', we can always replace anyclause cl in a program P by a clause cl0, provided that cl0 ' cl. This operation is often referred toas a clean up of the constraints as it is mainly used to present a clause in a more readable form.7Since all the semantic properties we refer to are invariant under ', we can always replace anyclause cl in a program P by a clause cl0, provided that cl0 ' cl. Of course we can also rename allthe variables in a clause. This operation is often referred to as a clean up as it is mainly used topresent a clause in a more readable form.

7.3. An Example 141Len = Len'+1 ^ Sum = Amount*Value+Sum' 2w sum and len(Rest, Rates, Sum', Len'),member(hCurrency, Valuei, Rates).Notice that, because of this last operation, the de�nition of w sum and len is nowrecursive and it needs to traverse the list only once. Indeed, this operation consti-tutes the crucial optimization step. We now show that the applicability conditions ofTheorem 7.2.10 were satis�ed, and therefore that AV2 �O AV1. For this we use thefollowing proposition.Proposition 7.3.2 Let cl : H b 2 ~B be the unique clause which de�nes Pred(H)in the module M : hP; �i and assume Pred(H) 62 �. Then true 2 H is operationallyequivalent to b 2 ~B under V ar(H) in M .Moreover, if M 0 : hP 0; �i is the module obtained by unfolding some atoms A1; : : : ; Anin the body of cl such that Pred(Ai) 62 � for all i 2 [1;m], then true 2 H is opera-tionally not-slower than b 2 ~B under V ar(H) in M 0.Proof. The �rst part is obvious. For the second one we prove the case in which onlyone atom A is unfolded in the body of cl. The generalization to n atoms is immediate.We �rst need the following.Claim 7.3 Let cl, P , P 0 and A be de�ned as above and let e 2 ~E be a genericquery. Then, for any derivation � : e 2 ~E P; d 2 ~D such that ~D does not containany renamed version of the atom A, there exists a derivation �0 : e 2 ~E P 0; d0 2 ~D0such that � and �0 are similar and j�0j � j�j. Moreover, if (a renamed version of)clause cl is used in �, then j�0j < j�j.Proof. To simplify the notation in the following we will denote by A and cl also anyrenamed version of the atom A and of the clause cl, respectively. We also assumethat ~B (the body of cl) has the form A; ~G. The proof is by induction on the numberof times h that cl is used in the derivation �.For the base case h = 0 the thesis holds immediately, since P 0 di�ers from P onlyin the fact that the clause cl has been replaced for its unfolded versions.For the inductive case h > 0 �rst observe that any occurrence ofA in the derivation� will eventually be rewritten by using a clause in P , since ~D does not contain theatom A. Moreover, we can assume without loss of generality that the selection ruleused in � is such that as soon as A appears in the derivation A is immediatelyselected. In fact, to prove the claim clearly we can consider derivations up to ', i.e.we can identify similar derivations. Since conjunction of constraints is associativeand commutative, it is immediate to see that changing the selection rule of � into theone assumed before does not a�ect ' equivalence. For the same reason we can alsoassume that the bodies of clauses are suitably reordered.According to these assumptions � has the forma 2 ~A P; c 2 ~C;H 0 P; c ^ (H = H)0 ^ b 2 ~C;A; ~G P; d0 2 ~C; ~K; ~G P; d 2 ~D

142 Chapter 7. The Replacement Operation for CLP Moduleswhere d0 � (c ^ (H = H 0) ^ b ^ (A = A0) ^ k), a renamed version of the clauseA0 k 2 ~K de�nes Pred(A) in P and the clause cl is not used in the derivationd0 2 ~C; ~K; ~G P; d 2 ~D.By inductive hypothesis there exists a derivation �01 in P 0 which is similar to�1 : a 2 ~A P; c 2 ~C;H and such that j�01j � j�1j. By de�nition of unfold-ing in P 0 we �nd the (renamed version of the) clause H b ^ (A = A0) 2 ~K;G.Therefore, by De�nition 7.2.1, there exists a derivation �02 in P 0 which is similar to�02 : a 2 ~A P; d0 2 ~C; ~K; ~G and such that j�02j < j�2j. Since the clause cl is not usedin d0 2 ~C; ~K; ~G P; d 2 ~D, we can conclude that there exists a derivation �0 in P 0which is similar to � and such that j�0j < j�j, thus completing the proof of the Claim.2 To prove the Proposition consider now a generic �-derivation b 2 ~B P; c 2 ~C.Since in P we �nd the clause cl : H b 2 ~B, clearly there exists also a �-derivation� : true 2 ~H P; c0 2 ~C 0 such thatq(~x) c 2 ~C ' q(~x) c0 2 ~C 0 (7.12)where ~x = V ar(H) and q is any (dummy) predicate symbol.Note that in the derivation � the clause cl is used at least once, since it is theonly clause de�ning Pred(H) in P . Moreover the hypothesis Pred(A) 62 � and thede�nition of �-derivation imply that ~C 0 does not contain any renamed version of theatom A. Therefore we can apply previous Claim thus obtaining that there exists aderivation �0 in P 0 which is similar to � and such that j�0j < j�j. This, together with(7.12), De�nition 7.2.1 and De�nition 7.2.9 completes the proof. 2Because of the above Proposition, denoting by c4 the constraint which appearin the clause c4, we have that c4 2 w sum and len(Rest,Rates,Sum',Len') is O-equivalent to andO-not-slower than c4 2 exchange rates(Rates), weighted sum(Rest,Rates, Sum'), len(Rest, Len') y under f Currency,Amount,Rest,Rates, Sum, Len g in AV1. Therefore the conditions of Theorem 7.2.10are satis�ed and AVERAGE �O AV2 holds. More generally, Proposition 7.3.2 showsalso that the applicability conditions given in Theorem 7.2.10 allow the replacementto mimic, to a large extent, the unfold/fold transformation as de�ned in [96].Finally, in order to let also the de�nition of average enjoy of these improvements,we simply replace exchange rates(Rates), weighted sum(Xs, Rates, Sum), len(Xs,Len) by w sum and len(Xs, Rates, Sum, Len) in the body of c1. After the cleaning-up the resulting clause isc6: average(List, Av) Len>0 ^ Av * Len = Sum 2w sum and len(List, Rates, Sum, Len).So, we have obtained the module AV3, consisting of the clauses c6, c3 and c5, wherewe �nd a de�nition of average which needs to scan the list only once. The correct-ness of this last transformation step, i.e. the compositional equivalence of AV3 withAV2 (and consequently also with the original module AVERAGE), can be easily proven

7.4. Correctness wrt other congruences 143using Theorem 7.2.14 as follows. As before, because of Proposition 7.3.2 we have thatexchange rates(Rates), weighted sum(Rest, Rates, Sum'), len(Rest, Len')isO-equivalent to w sum and len(Rest, Rates, Sum', Len') under f Rest, Rates,Sum', Len' g in AV1. This equivalence holds also in AV2, since the correctness of the�rst replacement implies AV1 �O AV2. From this it follows that c1 2 exchange rates(Rates),weighted sum(Xs, Rates, Sum), len(Xs, Len) isO-equivalent to c1 2 w sum and len(List,Rates, Sum, Len) under fList, Avg. Moreover, w sum and len does not dependon clause c1 in AV2. Therefore, from Theorem 7.2.14 it follows that AV3 �O AV2, andtherefore, from the correctness of the previous transformation steps, that AVERAGE�O AV3, i.e. that the whole transformation is correct. 27.4 Correctness wrt other congruencesIn some cases one can be interested in preserving other kind of properties of modulesrather than their answer constraints. Indeed in the literature, together with the answerconstraint semantics [43], we �nd two other semantics for CLP without negation. Oneis the so-called C-semantics which was de�ned for pure logic programs [29, 39] andthen adapted to CLP (speci�cally for program's transformation) in [14] by usingan operational de�nition. The C-semantics characterizes the most general answerconstraints of a CLP program. The second, and more notable one, is the least modelsemantics (on the relevant algebraic structure D) [51]. This semantics is the CLPcounterpart of the least Herbrand model and it is commonly considered the standarddeclarative semantics for CLP.In this Section we consider the congruences induced by these two semantics. Weshow that we can easily adapt to both the contexts the applicability conditions used inTheorems 7.2.10 and 7.2.14. Moreover, since these congruences are weaker than theoperational one, the resulting applicability conditions are weaker than the previousones, thus allowing more optimizations on the modules.In order to de�ne formally the new congruences we �rst need the following.De�nition 7.4.1 Let P , P 0 be two programs, � : c 2 ~C P; b 2 ~B and �0 : c 2 ~C P 0;b0 2 ~B0 be two derivations starting in the same goal, let also ~x = V ar(c 2 ~C). Wesay that �0 is more general than �, � � �0,i� D j= 9�~x b 2 ~B ! 9�~x b0 2 ~B0. 2Notice that D j= 9�~x b 2 ~B ! 9�~x b0 2 ~B0 holds i�, for each solution � of b,there exists a solution �0 of b0 such that � and �0 agree on the variables ~x and eachelement in the conjunction ~B0�0 is also an element of the conjunction ~B�. It is alsoworth noticing that � does not represent \one side" of ', since we can have that� � �0, �0 � � and still � 6' �0.This is due to the fact that in the de�nition of ' the goals have to be consideredas multisets, while here considering them as sets is su�cient. For instance, this

144 Chapter 7. The Replacement Operation for CLP Modulesis the case when we consider the derivations � : p(x) ; x = y 2 q(y); q(y): and�0 : p(x); x = y 2 q(y).We can now de�ne the C- and theM-congruence as follows.De�nition 7.4.2 (C- and M-congruence) Let M1 and M2 be CLP modules thathave the same set of open predicates. We say thatM1 and M2 are C-congruent, M1 �C M2,i�, for every module N such that M1 � N and M2 � N are de�ned, we have thatfor each refutation in M1 �N there exists a more general refutation in M2 �N andvice-versa. Moreover, we say thatM1 and M2 areM-congruent, M1 �M M2,I� for every module M such that M1 �M and M2 �M are de�ned, we have thatM1 �M and M2 �M have the same least D-model. 2The operational congruence is stronger than the C-congruence, which in turn isstronger than the M-congruence. This will be formally proved in the sequel. Toclarify the di�erence among the three kind of relations let us consider the followingsimple modules where we assume the set of open atoms to be empty.M1 : M2 : M3 :p(X). p(X). p(X) X = Y+1 2 p(Y).p(0). p(0).It is easy to check that no one of these three modules is operationally congruentto another. On the other hand M1 is C-congruent (and therefore alsoM-congruent)to M2, while it is not C-congruent to M3. Finally, if the structure we refer to is theone whose domain contains only the set of natural numbers, then M3 isM-congruentto both M1 and M2.Note 7.4.3 For the reader familiar with the original de�nition of the C-semantics[29] some explanations are in order here. The C-semantics of a pure logic program Pis de�ned indi�erently as(a) the set of atomic logical consequences of P , or(b) the set of most general answers computed by P .It is also proven ([68]) that, if the underlying language is in�nite, then two pure logicprograms have the same C semantics i� they have the same least Herbrand model.Now, the CLP counterpart of the C-semantics is de�ned in [14] just as the coun-terpart of (b) above. The fact is that, for CLP programs the statements (a) and (b)are not equivalent to each other. This is shown for example by the programsp(X) X = a _ X = b.andp(X) X = a.p(X) X = b.

7.4. Correctness wrt other congruences 145Moreover, since in the CLP context we need the domain D for evaluating theconstraint, it makes little sense talking about the logical consequences of P (whichare the formulae � such that P j= �). On the other hand, it is meaningful talk aboutthe logical consequences of P \under D", by this we mean the set of formulae �such that D j= P ! �. Now, since the domain of D determines the universe of ourinterpretations and models, we have that two CLP programs have the same \set ofatomic8 logical consequences under D" i� they have the same least D-model, butthis does not imply that they have the same most general answers. Indeed, if weconsider the programs in M1 and M3 above, we have that, if D is the usual additivestructure on the set of natural numbers, M1 and M3 (seen as programs) have thesame least D models, therefore the same set of logical consequences \under D", butthey do not have the same set of most general answers. Notice that this is the caseeven though our structure contains the in�nite set of constants corresponding to thenatural numbers. 2As before, we say that a transformation is (totally) C-correct (resp. M-correct)i� it maps modules into C- (resp. M-) congruent ones. Of course, the weakerthe congruence we consider, the more operations we are going to be allowed on themodules, but also the less \faithful" will be the resulting module. For example,a typical operation which is C-correct but possibly not operationally correct is theelimination of duplicated atoms in the body of the clause (see later).7.4.1 Correctness wrt C-congruenceIn this Subsection we provide the applicability conditions for the replacement op-eration in the case we refer to the C-congruence. More precisely, we are going toreformulate appropriately Theorems 7.2.10 and 7.2.14. This provides a generaliza-tion of the result on the correctness of the replacement operation given in [14].We start with a Theorem which gives a condition su�cient to guarantee that twomodules are C-congruent, thus providing a C-counterpart of Theorem 7.2.3. Its proofcan easily be obtained from the one of Theorem 7.2.3 and thus it is omitted.Theorem 7.4.4 Let M1 = hP1; �i and M2 = hP2; �i be two modules. If, for each �-derivation �i in Mi there exists a �-derivation �j in Mj such that �i � �j (i; j 2 [1; 2],i 6= j), then M1 �C M2. 2This result also shows that the C-congruence is strictly weaker that the operationalone. Now, in order to provide the C-version of the applicability conditions for thereplacement operation, we restate the De�nitions 7.2.4 and 7.2.9 to adapt them tothe new context.De�nition 7.4.5 Let M = hP; �i be a module, c1 2 ~C1 and c2 2 ~C2 be two queriesand ~x be a tuple of variables. Then we say thatc2 2 ~C2 is C-equivalent to c1 2 ~C1 under ~x in M8Here we can consider atomic also a formula of the form p(~X) c where c is a constraint.

146 Chapter 7. The Replacement Operation for CLP Modulesi� for each �-derivation �i : ci 2 ~Ci P; bi 2 ~Bi there exists a �-derivation �j :cj 2 ~Cj P; bj 2 ~Bj such that D j= 9�~x bi 2 ~Bi ! 9�~x bj 2 ~Bj (i 6= j, i; j 2 [1; 2]).Moreover, we say thatc2 2 ~C2 is C-not-slower than c1 2 ~C1 under ~x in Mi� for each �-derivation �1 : c1 2 ~C1 P; b1 2 ~B1 there exists a �-derivation �2 :c2 2 ~C2 P; b2 2 ~B2 such that j�2j � j�1j and D j= 9�~x b1 2 ~B1 ! 9�~x b2 2 ~B2.In this de�nitions all the derivations are supposed to be renamed apart wrt ~x. 2It is easy to see that the concepts of C-equivalence and of C-not-slower are weakerthan their operational counterparts given in De�nitions 7.2.4 and 7.2.9. Intuitively,the di�erence in terms of derivations lies in the fact that for the former we want a one-to-one correspondence between all the partial derivations ending with open atoms,while the latter requires this one-to-one correspondence to hold only for the \mostgeneral" ones. Now when we refer to the C-congruence we can weaken the hypothesisof Theorems 7.2.10 and 7.2.14 by replacing the concepts of equivalent and not-slowerby their C-counterparts. Namely, we have the following.Theorem 7.4.6 (C-correctness) Let cl : A c 2 ~C; ~E be a clause of the moduleM : hP; �i, and M 0 : hP 0; �i be the result of replacing c 2 ~C by d 2 ~D in cl. SoP 0 = Pnfclg [fcl0 : A d 2 ~D; ~Eg. If� d 2 ~D is C-equivalent to c 2 ~C under V ar(A; ~E) in M and{ either d 2 ~D is C-not slower than c 2 ~C under V ar(A; ~E) in M ,{ or no predicate in ~D depends on Pred(A) in M ,then M �C M 0 2Proof. We now show that: (a) for each �-derivation �0 in M 0 there is a derivation� in M such that �0 � � and that (b) (the vice-versa) for each �-derivation � in Mthere is a derivation �0 in M 0 such that � � �0. From Theorem 7.4.4 this will implythe thesis.Actually, the proof is almost identical to a combination of the proofs of Theorems7.2.5, 4.3 and 4.7. So it is much more convenient if we just show how these have tobe modi�ed in order to adapt them to the context of the C-congruence.Part (a). In order to show that for each derivation �0 in M 0 there is a derivation� in M such that �0 � � it is su�cient to apply the following syntactic changes to theproof of Theorem 7.2.5:� In each equation labeled by the y sign, we replace the ' operator with � (where,obviously, we de�ne � � �0 i� �0 � �).� The equation (7.5) has to be replaced by D j= 9�~x b1 2 ~B1 ! 9�~x b3 2 ~B3:Part (b). In order to show that for each derivation � in M there is a derivation�0 in M 0 such that � � �0 it is su�cient to combine together the proofs of Theorems4.3 and 4.7 and apply the following syntactic changes:� In each equation labeled by the y sign, replace the ' operator with �.

7.4. Correctness wrt other congruences 147� The equations (7.8) and (7.10) have to be replaced by: D j= 9�~x b1 2 ~B1 ! 9�~x b3 2 ~B32This result can also be seen as a generalization of Proposition 4.6 in [14]. In fact,it is easy to check that when the hypothesis of that proposition are satis�ed thenthe replacing and the replaced conjunction are always C-equivalent to each other andthat the replacing conjunction is always not-slower than the replaced one (under anappropriate set of variables).The applicability conditions in the previous Theorem are weaker than the ones inTheorems 7.2.10 and 7.2.14. This reects the fact that some replacement operationswhich are correct wrt C congruence may not be so wrt the operational one. A typicalexample of a replacement operation which always satis�es the hypothesis of Theorem7.4.6, but which is possibly not operationally correct, and therefore does not satisfythe hypothesis of Theorems 7.2.10 and 7.2.14, is the elimination of duplicate atoms inthe body of a clause. Indeed, consider a program M consisting the following clausec1: p(X,Y) q(X,Y), q(X,Y).q(a,W).q(W,b).If we eliminate one of the atoms in the body of c1 then we lose the answer f X=a ^Y=bg to the query p(X,Y). For this reason the operation is not operationally correct.However it is C-correct, in fact the most \general" answers to the query p(X,Y)(which are f X=ag and f Y=bg) are not lost.7.4.2 Correctness wrt M-congruenceIn this subsection we give the M-counterpart of the results stated in the previousone. We formulate (and prove correct) the applicability conditions for the replacementoperation in case we want to preserve theM-congruence.As we mentioned before, theM-congruence is strictly weaker then the C-congruence.Indeed, we have already seen that two modules which areM-congruent do not needto be C-congruent (consider previous programsM1 andM3). For the other implicationwe have the following result, whose proof is given in the Appendix.Proposition 7.4.7 If two modules are C-congruent then they are alsoM-congruent.2 When considering theM-congruence we can further weaken the applicability con-ditions for the replacement operation by de�ning the notions ofM-equivalent and ofM-not-slower as follows.De�nition 7.4.8 Let M = hP; �i be a module, c1 2 ~C1 and c2 2 ~C2 be two queriesand ~x be a tuple of variables. Then we say thatc1 2 ~C1 isM-equivalent to c2 2 ~C2 under ~x in M

148 Chapter 7. The Replacement Operation for CLP Modulesi� for each �-derivation ci 2 ~Ci P; bi 2 ~Bi and each solution #i of bi, there exists aderivation cj 2 ~Cj P; bj 2 ~Bj and a solution #j of bj such that D j= ~Bi#i ! ~Bj#jand ~x#1 = ~x#2 (i; j 2 [1; 2]; i 6= j).Moreover, we say thatc2 2 ~C2 isM-not-slower than c1 2 ~C1 under ~x in Mi� for each �-derivation �1 : c1 2 ~C1 P; b1 2 ~B1 and for each solution #1 of b1, thereexists a derivation �2 : c2 2 ~C2 P; b2 2 ~B2 and a solution #2 of b2 such that j�2j � j�1j,D j= ~B1#1 ! ~B2#2 and ~x#1 = ~x#2.Again, all the considered derivations here considered are supposed to be renamedapart wrt ~x. 2From this de�nition it follows immediately that theM-equivalence is the weakestof the three equivalences we have introduced, as it checks only the \ground" deriva-tions. Theorem 7.4.6 can now be restated for the case ofM-congruence as follows.Theorem 7.4.9 (M-correctness) Let cl : A c 2 ~C; ~E be a clause of the moduleM : hP; �i, and M 0 : hP 0; �i be the result of replacing c 2 ~C by d 2 ~D in cl. SoP 0 = Pnfclg [fcl0 : A d 2 ~D; ~Eg. If� If d 2 ~D isM-equivalent c 2 ~C under V ar(A; ~E) in M and{ either d 2 ~D isM-not slower than c 2 ~C under V ar(A; ~E) in M ,{ or no predicate in ~D depends on Pred(A) in M ,then M �M M 0.Proof. See Appendix 27.4.3 The non-modular caseWe discuss now how the previous results can be applied to the non-modular case, thatis when programs are considered as stand-alone units. In this case, since we do nothave to consider �-contexts, the notion of correctness for the replacement operationis de�ned wrt the following equivalences.De�nition 7.4.10 Let P1 and P2 be CLP programs. We say that P1 and P2 are� operationally equivalent i� for each refutation in P1 there exists a similar refut-ation in P2 and vice-versa,� C-equivalent i� for each refutation in P1 there exists a more general refutationin P2 and vice-versa,� M-equivalent i� P1 and P2 have the same least D-model.Here, the use of the term equivalence, rather than congruence reects the fact thatwe are not considering modules, but (stand-alone) programs.According to the above de�nition, we say that the replacement operation on CLPprograms is operationally (C-, M-) correct i� it maps programs into operationally(C-,M-) equivalent ones.

7.5. Related papers and conclusions 149From previous de�nition it follows immediately that the non-modular case canbe naturally regarded as a particular instance of the modular one. In fact, if weassume that the set of open predicates is empty, then the concepts of equivalenceand congruence coincide. Moreover, according to De�nition 6.3.2 if � = ;, thencomposition is allowed only between predicate disjoint modules, and, semantically,this is like allowing no composition at all. Therefore the correctness results in thenon-modular case can be obtained by just setting � = ; in Theorems 7.2.10, 7.2.14and 7.4.6.From the de�nitions it is also clear that the smaller is the set of open predicates,the weaker become the applicability conditions needed to ensure correctness of re-placement, for all the three congruences considered. In particular, the applicabilityconditions for the non-modular case are quite weaker than the ones for the modularsetting.7.5 Related papers and conclusionsIn this section we try to highlight the similarities and the di�erences between theapproach we follow and the ones proposed in the literature.Let us start by considering Maher's paper [69], which, to the best of our know-ledge, is the only paper in the literature that deals with the replacement operation inthe context of modular (constraint) logic programs. Firstly it should be mentionedthat [69] takes into considerations also the unfold and the fold operations, which arebeyond the scope of this chapter. Apart from that, the main di�erence between thischapter and [69] is that Maher takes into consideration normal programs (i.e. pro-grams which contain negated atoms in the bodies of their clauses). Since the toolsneeded to handle normal programs are quite di�erent and heavier than those su�-cient to deal with de�nite programs, it follows that the techniques adopted to provethe correctness of the replacement operation are quite di�erent as well, and compar-ison between the two articles are di�cult. For instance, the applicability conditionsof [69] guarantee the preservation of the Perfect Model Semantics [6, 81], which isincomparable to the semantics used here. It is of no surprise then that if we restrictour attention to de�nite programs, then our results extend those of [69]. In particulareach time that the requirements of [69] are satis�ed also the hypothesis of Theorem7.4.9 are satis�ed as well. This implies that [69] requires the replacing conjunction tobe always independent from the modi�ed clause (therefore forbidding the introduc-tion of recursion via the replacement operation). Finally, another di�erence is due tothe fact that we adopt a more exible de�nition of modular program, which allows,for instance, mutual recursion among modules.Apart from [69], in the literature we �nd only another paper which investigatesthe replacement operation for CLP: The one by Bensaou and Guessarian [14]. In[14] the authors provide applicability conditions for the replacement operation (andalso for the operations of unfold and fold, which, we repeat ourselves, have beenstudied in Chapter 6 and are beyond the scope of this chapter) which guarantee

150 Chapter 7. The Replacement Operation for CLP Modulesthe correctness of the operation wrt the C-semantics. Of course, the main di�erencebetween the approach to the replacement operation given in this chapter and the oneof [14] is that in [14] modularity is not an issue. In any case, the C-correctness resultin Theorem 7.4.6 provides us with a generalization of Proposition 4.6 in [14]: eachtime that the applicability conditions given in [14] are satis�ed we can also apply thereplacement. The converse is not true (even in the non-modular case). For instancethe replacements performed in Example 7.3.1 are not feasible using the tools of [14].In the Logic Programming AreaAs we mentioned in the introduction, the replacement operation was introduced in thearea of pure logic programs by Tamaki and Sato in [96]. Later, developments wereprovided by the works of Sato himself [88], Gardner and Shepherdson [47], Bossi,Cocco and Etalle [20], Proietti and Pettorossi [79, 80] and Cook and Gallagher [32].The main improvement of this chapter over all the papers just mentioned is that wetake into consideration modular programs. So, in the rest of this section we restrictour attention to non-modular programs, and we try, in this more restrictive case, tohighlight the other main di�erences (and relations) between our approach and theother ones.In [96] the replacement operation is part of an unfold/fold transformation systemand the applicability conditions are devised in order to �t with the other two oper-ations. Apart from this, the main di�erences between this chapter and [96] are dueto the fact that the applicability conditions of [96] guarantee the correctness of theoperation wrt the least Herbrand model semantics, while we also consider strongersemantics (the C and the operational semantics). Still there are some similaritiesbetween [96] and this chapter which are worth noticing. Namely, the applicabilityconditions given in [96] can also be seen as being based on two requirements:(a) The replacing conjunction must be equivalent to the replaced one in Pnfclg,where P and cl are respectively the modi�ed program and clause. Unfortu-nately, as pointed out in [47], the fact of referring to Pnfclg rather than to Palone, leads to an error in the applicability conditions.(b) for each proof for the replaced query there has to be a corresponding proof forthe replacing one such that the rank of the latter is not greater than the rankof the former. Intuitively, the rank of a proof can be associated to the size of aproof tree. Of course this condition relates to (it actually inspires) the conceptof not-slower query which is extensively used here.Later, Sato in [88] considered replacement of tautologically equivalent formulasin the context of �rst-order programs. Being the context so di�erent than the oneconsidered here, [88] is practically unrelated to this chapter.A more related paper is the one of Gardner and Shepherdson [47]. [47] deals alsowith the operations of unfold and fold in the context of normal program, however,the section on replacement is quite separate from the rest of the paper, as it deals

7.5. Related papers and conclusions 151with de�nite programs and refers to the C-semantics. In fact the main result of[47] states that if the replacing conjunction is equivalent to the replaced one thenfor every computation feasible in the original program P there exists a more generalcomputation feasible in the transformed program P 0 and vice-versa. The introductionof a loop is avoided by adopting a quite restrictive de�nition of equivalence: it isrequired that the most general answers to the replaced and the replacing queriesare not a�ected by the presence or the absence of the modi�ed clause cl in theprogram. In practice both queries have to be semantically independent from themodi�ed clause. Therefore, for those programs (we hope the great majority) forwhich semantic independence coincides with physical independence9 Theorem 7.4.6provides a generalization of Theorem 5.1 in [47] in the following two ways: (a) it is notrequired that the replaced conjunction is independent from the (predicate in the headof the) replaced clause, and (b) it provides a condition (the one that uses the conceptof being not-slower) that allows also the replacing conjunction to be dependent onthe (predicate in the head of the) replaced clause, therefore allowing the introductionof recursion.Going on with our small survey, we can now consider [20], which can be regardedas the ancestor of this chapter. In [20], Bossi et al. give some conditions su�cient toguarantee the correctness of the replacement operation wrt the operational semantics(of logic programs). Of course the main di�erence between this chapter and [20] isthat in the latter only non-modular logic programs are considered. Apart from thatthere are other di�erences, namely� [20] uses a quite more complicated yet more general method to prevent the in-troduction of a loop: the replacing conjunction may be dependent on the headof the replaced clause and still be slower than the replaced conjunction, as longas the di�erence in \speed" (the delay) is bounded by the dependency degreeof the replacing conjunction on the head of the modi�ed clause. In this sensethe approach we follow here is slightly more restrictive. However, we believethat the gain in generality is not worth the loss in clarity. This applies in par-ticular to this chapter, in which things are further complicated by the presenceof modularity. Recall that, as we mentioned in the introduction, one of ourmain goals is to propose applicability conditions which are not \discouraginglycomplicated".� A second di�erence is due to the fact that [20] referred to a bottom-up construc-tion of the semantics. The top down method we adopted here is not only moreintuitive, but it also more exible. In particular the second part of Proposition7.3.2 is not obtainable with the tools of [20].The results of [20] have also been applied to normal programs in Chapter 4 of thisthesis). These papers provide applicability conditions which guarantee the correctnessof the operation wrt Fitting's and Kunen's semantics.Other related papers are the ones of Proietti and Pettorossi [80], and Cook and9Here we say that a a query is physically independent from a clause A ~B, if no predicate inthe query depends on Pred(A) in the sense of the Dependency De�nition 7.2.13.

152 Chapter 7. The Replacement Operation for CLP ModulesGallagher [32].In [80] it is proposed a method based on program's manipulation. The underlyingidea is the following: suppose that we want to obtain the program P 0 from P byapplying a replacement operation. To guarantee total correctness, we maymanipulate(an augmented version of) P via the syntactic operations of unfolding and folding untilwe obtain a program Q which validates syntactically the operation. This guaranteesthat P 0 will have the same operational semantics of P . This method is clearly totallydi�erent (hence incomparable) from the one we propose.Finally, Cook and Gallagher [32] present an approach to the replacement operationwhich is based on termination analysis. In addition to the usual condition thatthe replacing conjunction has to be equivalent to the replaced one, they avoid theintroduction of a loop by simply requiring (a subprogram of) the resulting programto be terminating [5].In the Functional Programming AreaWithout pretending to be exhaustive, we want to mention a recent paper on thereplacement operation for functional programs which, independently, follows sub-stantially the same approach we do. In [86], Sands guarantees total correctness byrequiring �rstly the replacing expression to be equivalent to the replaced one andsecondly by avoiding the introduction of a loop by� requiring the replacing expression to be independent from the modi�ed clause(corresponding to the method used in Theorem 7.2.14),� or requiring the replacing expression to be an improvement over the replacedone. This clearly corresponds to the condition we give in Theorem 7.2.10. Theunderlying intuition given in [86] is that in this case, the evaluation of the repla-cing expression converges \faster" than one of the replaced one, consequently,all evaluations will converge faster in the transformed program than in theoriginal one and, parallelly, no dangerous loop may be introduced.Concluding remarksWe have investigated optimizations of CLP modules based on the replacement trans-formation. As discussed above, our results extend previous ones in the �eld of trans-formations for logic programs in that we have de�ned applicability conditions forreplacement which guarantee that the original and the transformed module are se-mantically equivalent under any �-context. These conditions have been instantiatedto consider three di�erent semantic notions. Moreover, also when restricting to thenon-modular setting, we provide generalizations of previous results for replacementof CLP programs.We believe that our setting is suitable as a theoretical basis to de�ne tools for theoptimization of CLP modules. In particular, the applicability conditions which allowone to obtain operationally congruent modules are the more natural for practicalapplications, since answer constraints are the standard results of CLP computations.

7.6. Appendix 1537.6 AppendixIn this Appendix we give the proofs of Proposition 7.4.7 and Theorem 7.4.9. Theproof of the Theorem follows the guidelines of the one of Theorem 7.4.6. First weintroduce an operational characterization of theM-congruence. To this end we needthe following.De�nition 7.6.1 Let � be a set of predicate symbols, � : cA 2 ~A ; b 2 ~B be a�-derivation, and � be a valuation. We say thath�; �i is a �-derivation-solution pair,If Dom(#) = Var(�) and # is a solution of b. 2When � is not speci�ed in the previous de�nition we mean that � can be any de-rivation (and not just a �-derivation). Moreover, if � is a derivation in M then we saythat h�; �i is a pair in M. We now need to extendDe�nition 7.4.1 to derivation-solutionpairs. The underlying idea is that h�1; �1i � h�2; �2i i� �1 and �2 are derivations start-ing in the same goal and �1�1 � �2�2. Therefore the following.De�nition 7.6.2 Let P , P 0 be two programs, �1 : cA 2 ~A P; b1 2 ~B1 and �2 :cA 2 ~A P 0; b2 2 ~B2 be two derivations starting in the same goal. Let also �1 and �2be solution of �1 and �2, respectively. We say thath�2; �2i is more general than h�1; �1i, h�1; �1i � h�2; �2i,if D j= ~B1�1 ! ~B2�2. 2We can now characterize the concept ofM-congruence.Theorem 7.6.3 Let M1 = hP1; �i and M2 = hP2; �i be two modules. Equivalentare � for each �-derivation-solution pair h�i; �ii in Mi there exists a �-derivation-solution pair h�j ; �ji in Mj (i 6= j) such that h�i; �ii � h�j ; �ji,� M �M M 0. 2Proof. An analogous result, for the case of pure logic programs, is proved in [22].The extension to the CLP case is straightforward. 2This Theorem represents theM- counterpart of Theorems 7.2.3 and 7.4.4. Noticethat, as opposed to the previous cases, here we have a bidirectional implication. Animmediate consequence of this result is Proposition 7.4.7; let us state it again.Proposition 7.4.7 If two modules are C-congruent then they areM-congruent.Proof. Straightforward from Theorem 7.6.3 and De�nitions 7.4.2, 7.4.1 and 7.6.2. 2Before proving Theorem 7.4.9 we need to strengthen Claim 7.2 as follows. Hereand in the following, given a derivation � : cA 2 ~A; b 2 ~B, we say that the valuation� is a solution of � if Dom(�) = Var(�) and � is a solution of b.

154 Chapter 7. The Replacement Operation for CLP ModulesClaim 7.4 Let P be a program, and c1 ^ c2 2 ~C1; ~C2 be a query. Then, there existsa derivation c1 ^ c2 2 ~C1; ~C2 P; d 2 ~D of length n i� there exist two derivations�1 : c1 2 ~C1 P; d1 2 ~D1 and �2 : c2 2 ~C2 P; d2 2 ~D2 such that(i) ~D � ~D1; ~D2, and d � d1 ^ d2 is satis�able,(ii) the variables that �1 and �2 have in common are exactly those that c1 2 ~C1 andc2 2 ~C2 have in common,(iii) j�1j+ j�2j = n.(iv) if � is a solution of � then �jV ar(�i) is a solution of �i,(v) if �1 is a solution of �1 and �2 is a solution of �2, such that �1 and �2 agree conthe set of variables Var(c1 2 ~C1) \ Var(c2 2 ~C2) then �1�2 is a solution of �.Moreover �1�2jV ar(�i) = �i.Proof. The �rst part coincides with Claim 7.2. The second part is a straightforwardconsequence of the �rst one. 2We can eventually prove the Theorem 7.4.9.Theorem 7.4.9 (M-correctness) Let cl : A c 2 ~C; ~E be a clause of themodule M : hP; �i, and M 0 : hP 0; �i be the result of replacing c 2 ~C by d 2 ~D in cl.So P 0 = Pnfclg [fcl0 : A d 2 ~D; ~Eg. If� If d 2 ~D isM-equivalent to c 2 ~C under V ar(A; ~E) in M and{ either d 2 ~D isM-not slower than c 2 ~C under V ar(A; ~E) in M ,{ or no predicate in ~D depends on Pred(A) in M ,then M �M M 0.Proof. As in Theorem 7.4.6 we divide the proof in two parts. In part (a) we provepartial correctness: we show that for each pair �-derivation-solution h�0; �0i in M 0there is a pair �-derivation-solution h�; �i in M such that h�0; �0i � h�; �i. In part(b) we show the vice-versa: that for each �-derivation-solution h�; �i in M there isa �-derivation-solution h�0; �0i in M 0 such that h�; �i � h�0; �0i. By Theorem 7.6.3this implies the thesis. In the following, for the sake of simplicity, derivation-solutionpairs will be referred to simply as pairs, and, as in the proof of Theorem 7.2.5, wefollow Assumption 7.2.6.Part (a). We proceed by induction on the length of the derivation. Let h�0; �0ibe a �-derivation-solution in M 0.Base case j�0j = 0. This case is trivial, as the derivations of length zero are theones of the form b 2 ~B M 0; b 2 ~B.Inductive step. By Claims 7.1 and 7.4 the derivation �0 can be chosen of the form.�0 : true 2 H M 0; b 2 ~Bwhere ~B contains only �-atoms and Var(H) \ Var(~B) = ; (since �0 has length greaterthan 0). By the de�nition of derivation it follows that there exists a (renaming of a)clause of M 0, J cL 2 ~L (7.13)

7.6. Appendix 155and a �-derivation � 0 : (H = J) ^ cL 2 ~L M 0; b 2 ~Bsuch that j�0j = j� 0j + 1, Var(� 0) = Var(�0), and �0 is a solution of � 0. By inductivehypothesis there exists a pair h�; �i inM such that h� 0; �0i � h�; �i. Now, if the clauseof (7.13) was also a clause of M (that is, if it was not a result of the transformation),then there would exist a pair h�; �i inM such that h�0; �0i � h�; �i, thus concluding theproof of part (a). So we have to consider the case in which J cL 2 ~L 2M 0nM . Inthis situation J cL 2 ~L is exactly (a variant of) the clause cl0 : A d 2 ~D; ~E. Byappropriately renaming all the variables in the clauses and the derivations consideredso far, we can assume that � 0 is the derivation� 0 : (H = A) ^ d 2 ~D; ~E M 0; b 2 ~BBy Claim 7.4 there exist two derivations � 01 and � 02 such that� 01 : d 2 ~D M 0; b1 2 ~B1;� 02 : (H = A) 2 ~E M 0; b2 2 ~B2;b � b1 ^ b2 and ~B � ~B1; ~B2;j� 01j+ j� 02j = j� 0j = j�0j � 1;Var(� 01) \ Var(� 02) � Var(d 2 ~D) \ Var((H = A) 2 ~E);and such that �0jV ar(�01) is a solution of � 01 and �0jV ar(�02) is a solution of � 02. By theinductive hypothesis there exist two pairs h�1; �1i and h�2; �2i in M , such that�1 : d 2 ~D M 0; b�1 2 ~B�1;�2 : (H = A) 2 ~E M 0; b�2 2 ~B�2;h�1; �1i � h� 01; �0jV ar(�01)i and h�2; �2i � h� 02; �0jV ar(�02)i;Var(�1) \ Var(�2) � Var(d 2 ~D) \ Var((H = A) 2 ~E):Since d 2 ~D is (M-)equivalent to c 2 ~C under Var(A; ~E) in M it follows that thereexists a derivation-solution pair h�3; �3i, where�3 : c 2 ~C M; b3 2 ~B3;such that, if we let ~x = Var(A; ~E),�1j~x = �3j~x and D j= ~B1�1 ! ~B3�3: (7.14)By Assumption 7.2.6, the variables of b3 2 ~B3 which do not occur in d 2 ~D, do notoccur either in the derivations considered so far. Therefore the variables that �2 and �3have in common are certainly contained in ~x. This together with the fact that b�1 ^ b�2is satis�able and the left hand side of (7.14) implies that also b3 ^ b�2 is satis�able.Then, by Claim 7.4, we can put together �3 and �2 thus obtaining the derivation�4 : (H = A) ^ d 2 ~D; ~E M 0; b3 ^ b�2 2 ~B3; ~B�2

156 Chapter 7. The Replacement Operation for CLP Modulessuch that �4 = �2�3 is a solution of �4 and�4jV ar(�3) = �3 and �4jV ar(�2) = �2: (7.15)Since in M we �nd the clause cl : A c 2 ~C; ~E, by the de�nition of derivation itfollows that there exists a derivation � which uses only clauses of M such that � issimilar to true 2 H M; b3 ^ b�2 2 ~B3; ~B�2and �4 is a solution of �. Since the variables that b3 2 ~B3 has in common with therest of this expression are certainly contained in Var(A; ~E), from (7.14) and (7.15)it follows that �0 � �, thus concluding the proof of part 1.Part (b). We now show that for each �-derivation-solution h�; �i in M there is a�-derivation-solution h�0; �0i in M 0 such that h�; �i � h�0; �0i. The �rst part of this isperfectly symmetrical to the one of Part (a): We proceed by induction on the lengthof the derivation � in M .Base case j�j = 0. This case is trivial, as the derivations of length zero are theones of the form b 2 ~B M; b 2 ~B.Inductive step. By Claims 7.1 and 7.4, � can be chosen of the form� : true 2 H M; b 2 ~Bwhere ~B contains only �-atoms and Var(H) \ Var(~B) = ;. By the de�nition ofderivation there exist a (renaming of a) clause of M ,J cL 2 ~L (7.16)and a �-derivation � : (H = J) ^ cL 2 ~L M; b 2 ~Bsuch that j�j = j�j + 1, Var(�) = Var(�) and � is a solution of �. By the inductivehypothesis, there exists a pair h� 0; �0i in M 0 such that h�; �i � h� 0; �0i. Now, ifthe clause of (7.16) was also a clause of M 0 (that is, if it was not a result of thetransformation), then there would exist a derivation-solution pair h�0; �0i in M 0 suchthat h�; �i � h�0; �0i, thus concluding the proof of part (b).So we have to consider the case in which J cL 2 ~L 2MnM 0. In this situation,J cL 2 ~L is exactly (a variant of) the clause cl : A c 2 ~C; ~E. By appropriatelyrenaming all the variables in the clauses and the derivations considered so far, we canassume that � is exactly the derivation� : (H = A) ^ c 2 ~C; ~E M; b 2 ~B:By Claim 7.4, there exist two derivations �1 and �2 such that�1 : c 2 ~C M; b1 2 ~B1;�2 : (H = A) 2 ~E M; b2 2 ~B2;b � b1 ^ b2 and ~B � ~B1; ~B2;j�1j+ j�2j = j�j = j�j � 1Var(�1) \ Var(�2) � Var(c 2 ~C) \ Var((H = A) 2 ~E);

7.6. Appendix 157and such that �jV ar(�1) is a solution of �1 and �jV ar(�2) is a solution of �2.From the fact that d 2 ~D is (M-) equivalent to c 2 ~C under V ar(A; ~E) in M itfollows that there exists a pair h�3; �3i, where�3 : d 2 ~D M; b3 2 ~B3;such that , �3j~x = �j~x and D j= ~B1� ! B3�3 (7.17)for ~x = Var(A; ~E). We now have to distinguish two cases.Case 1. First we consider the case in which d 2 ~D is (M-) not slower than c 2 ~Cunder V ar(A; ~E) in M . In this case, we can assume that j�3j � j�1j.There is no loss in generality in assuming that the variables of b3 2 ~B3 which donot occur in d 2 ~D do not occur in the derivations considered so far. Therefore, thevariables that �2 and �3 have in common are certainly contained in ~x. From this,the fact that b1 ^ b2 is satis�able and the left hand side of (7.17) it follows that alsob3 ^ b2 is satis�able. By Claim 7.4, we can then put together �3 and �2, and obtainthe derivation �4 : (H = A) ^ d 2 ~D; ~E M; b3 ^ b2 2 ~B3; ~B2 (7.18)where we have that �4 = �2�3 is a solution of �4 and that�4jV ar(�3) = �3 and �4jV ar(�2) = �2: (7.19)Here we have also thatObservation 7.6.4 the variables that b3 2 ~B3 has in common with the rest of (7.18)are certainly contained in Var(A; ~E).Moreover, the following inequality holds: j�4j = j�3j+ j�2j � j�1j+ j�2j = j�j = j�j�1.Therefore, by the inductive hypothesis, there exists a pair h� 0; �0i such that � 0 : (H =A) ^ d 2 ~D; ~E M 0; b03 ^ b02 2 ~B03; ~B02 andh�4; �4i � h� 0; �0i (7.20)Since inM 0 we �nd the clause cl0 : A d 2 ~D; ~E, by the de�nition of derivation thereexists a derivation �0 : true 2 H M 0; b03 ^ b02 2 ~B3;0 ~B02 such that �0 is a solution of �0.Now Observation 7.6.4, (7.17), (7.19) and (7.20) imply that � � �0, thus concludingthe proof of Case 1.Case 2. We consider now the case in which d 2 ~D is not (M-) not-slower thanc 2 ~C under V ar(A; ~E) in M . From the hypothesis it follows then that d 2 ~D isindependent from cl. So, the clauses used in �3 are also clauses of M 0 and we havethat in M 0 there exists a derivation � 03 which is identical to �3, that is � 03 : d 2 ~D M 0;b3 2 ~B3. Moreover, since j�2j < j�j, by the inductive hypothesis there exists a pairh� 02; �02i such that � 02 : (H = A) 2 ~E M 0; b02 2 ~B02 andh�2; �jV ar(�2)i � h� 02; �02i: (7.21)

158 Chapter 7. The Replacement Operation for CLP ModulesBy Assumption 7.2.6, the variables that � 02 and � 03 have in common are contained in~x. Therefore, from the fact that b1 ^ b2 is satis�able and the left hand side of (7.17)it follows that also b3 ^ b2 is satis�able. The relation (7.21) implies that b3 ^ b2 issatis�able. FromClaim 7.4 it follows that we can put together � 02 and � 03 thus obtainingthe derivation � 04 : (H = A) ^ d 2 ~D; ~E M 0; b3 ^ b02 2 ~B3; ~B02such that �04 = �02�3 is a solution of � 04 and the following holds:�04jV ar(�03) = �3 and �04jV ar(�02) = �02: (7.22)Since in M 0 we �nd the clause cl0 : A d 2 ~D; ~E, by the de�nition of derivationthere exists a derivation �0 : true 2 H M 0; b3 ^ b02 2 ~B02; ~B3 such that �04 is a solutionof �0. Since the variables that b3 2 ~B3 has in common with the rest of this expressionare certainly contained in Var(A; ~E), from (7.17), (7.22) and (7.11) it follows thath�; �i � h�0; �04i, thus completing the proof. 2

Chapter 8On Uni�cation-Free Prolog Programs
We provide new simple conditions which allow us to conclude that in case of severalwell-known Prolog programs the uni�cation algorithm can be replaced by iteratedmatching. As already noticed by other researchers, such a replacement o�ers a possib-ility of improving the e�ciency of program's execution. The results we prove improveon those in our previous paper ([7]) both because they allow to prove uni�cation-freeness for a larger class of programs and queries and because the conditions are, inmany cases, checkable in a much more e�cient way.8.1 IntroductionUni�cation is the core of the resolution method employed by PROLOG, and itse�ciency has great inuence on the overall performance of the interpreter. Thebest sequential uni�cation algorithm employs linear time (see for example Martelli-Montanari [74]), and, most likely, this result cannot be improved by the adoption ofa parallel algorithm: Dwork et al. [36] have shown that, unless PTIME � NC (whichis quite improbable) uni�cation does not admit an algorithm that run polilogarithmictime using a polynomially bounded number of processors.On the other hand, fast parallel algorithms are available for term matching: aspecial case of uni�cation where one of the terms is always an instance of the otherone [36, 37]. This motivates the research for su�cient conditions for the replacementof uni�cation with term matching (see, for instance [34, 70, 13] and, more recently,[7, 71]).In Deransart and Maluszynski [34], Maluszynski and Komorowski [70] and Attaliand Franchi-Zannettacci [13], the problem was tackled by using modes. Intuitively,a mode is a function that labels as input or output the positions of each relation inorder to indicate how the arguments of a relation should be used. A limit of thisapproach is that the input positions of the queries are expected to be �lled in byground (i.e. variable-free) terms. Apt and Etalle [7] improved upon the previousresults by additionally using types, which allow to deal with non-ground inputs.159

160 Chapter 8. On Uni�cation-Free Prolog ProgramsHere, we generalize the results of [7]. The main tools of our approach can besummarized as follows:First, in addition to input and output positions, we introduce here U -positions.Here \U" can be read as unknown, as the U -positions of a query can be �lled inby any term. It turns out that for many of the programs mentioned in [7] we couldsimply turn some positions into U positions, both enlarging signi�cantly the class ofallowed queries and, when this process was applied to the nonground input positions,simplifying dramatically the method for proving that the program is uni�cation-free.Second, we now allow also pure terms to �ll in output positions of the queries,again this enlarges the class of allowed queries.Finally, by following Apt [4], we adopt here a more exible de�nition of well-typedprogram.As in our previous paper, the conditions we provide can be statically checkedwithout analyzing the search trees for the queries.This chapter is organized as follows. In the next section we introduce the conceptsof solvability by sequential matching and of uni�cation-free prolog program. Section3 contains the basic de�nitions of modes and types, which are the main tools we needin the sequel. Both concept are used in order to specify how the arguments of anatom should be used, and, ultimately, to restrict the set of allowed queries. In section4 we begin to tackle the problem of how to prove that a program is uni�cation-free:we introduce the de�nition of a Nicely Typed program and we show that, in somecases, this concept alone is su�cient for our purposes. This section can be also seenas an intermediate step: in the subsequent one we report the de�nition of Well-typedprogram. Programs which are both Well and Nicely Typed are the ones that willenable us to prove, in Section 5, our most general theorem (8.5.18). In Section 6 wegive a more restrictive version of our Main Theorem. The relevance of this resultlies in the fact that its applicability conditions can be tested in a much more e�cientway. Section 7 contains some practical examples, and in Section 8 we conclude bycomparing this chapter with our previous paper [7] and with another recent relatedpaper [71].8.2 PreliminariesIn what follows we study logic programs executed by means of the LD-resolution,which consists of the SLD-resolution combined with the leftmost selection rule. AnSLD-derivation in which the leftmost selection rule is used is called an LD-derivation.We allow in programs various �rst-order built-in's, like =, 6=, >, etc, and assume thatthey are resolved in the way conforming to their interpretation.We work here with queries, that is sequences of atoms, instead of goals, that isconstructs of the form Q, where Q is a query. Apart from this we use the standardnotation of Lloyd [65] and Apt [3]. In particular, given a syntactic construct E (sofor example, a term, an atom or a set of equations) we denote by Var(E) the setof the variables appearing in E. Given a substitution � = fx1=t1; :::; xn=tng we

8.2. Preliminaries 161denote by Dom(�) the set of variables fx1; : : : ; xng, by Range(�) the set of termsft1; : : : ; tng, and by Ran(�) the set of variables appearing in ft1; : : : ; tng. Finally, wede�ne Var (�) = Dom(�) [Ran(�).Recall that a substitution � is called grounding if Ran(�) is empty, and is calleda renaming if it is a permutation of the variables in Dom(�). Given a substitution� and a set of variables V , we denote by �jV the substitution obtained from � byrestricting its domain to V .Uni�ersGiven two sequences of terms ~s = s1; :::; sn and ~t = t1; :::; tn of the same lengthwe abbreviate the set of equations fs1 = t1; :::; sn = tng to f~s = ~tg and the sequences1�; :::; sn� to ~s�. Two atoms can unify only if they have the same relation symbol,and with two atoms p(~s) and p(~t) to be uni�ed we associate the set of equationsf~s = ~tg. In the applications we often refer to this set as p(~s) = p(~t). A substitution� such that ~s� = ~t� is called a uni�er of the set of equations f~s = ~tg. Thus the set ofequations f~s = ~tg has the same uni�ers as the atoms p(~s) and p(~t).A uni�er � of a set of equations E is called a most general uni�er (in short mgu)of E if it is more general than all uni�ers of E. An mgu � of a set of equations E iscalled relevant if Var (�) � Var(E).The following Lemma was proved in Lassez, Marriot and Maher [64].Lemma 8.2.1 Let �1 and �2 be mgu's of a set of equations. Then for some renaming� we have �2 = �1�. 2Finally, the following well-known Lemma allows us to search for mgu's in aniterative fashion.Lemma 8.2.2 Let E1; E2 be two sets of equations. Suppose that �1 is a relevantmgu of E1 and �2 is a relevant mgu of E2�1. Then �1�2 is a relevant mgu of E1 [E2.Moreover, if E1 [E2 is uni�able then �1 exists and for any such �1 an appropriate �2exists, as well. 2Solvability by (sequential) MatchingFollowing the notation of Apt and Etalle, [7], we begin by recalling the followingconcepts.De�nition 8.2.3 Consider a set of equations E = f~s = ~tg.� A substitution � such that either Dom(�) � Var(~s) and ~s� = ~t or Dom(�) �Var (~t) and ~s = ~t�, is called a match for E.� E is called left-right disjoint if Var(~s) \ Var (~t) = ;. 2Clearly, if E is left-right disjoint, then a match for E is also a relevant mgu of E.The sets of equations we consider in this chapter will always satisfy this disjointnessproviso due to the standardization apart.

162 Chapter 8. On Uni�cation-Free Prolog ProgramsDe�nition 8.2.4 Let E be a left-right disjoint set of equations. We say that E issolvable by matching if E is uni�able implies that a match for E exists. 2Consider a selected atom p(t1; : : :; tn) and the head p(s1; : : :; sn) of an input clauseused to resolve it. The uni�cation mechanism tries then to �nd a mgu of the set ofequations t1 = s1; : : : ; tn = sn. Sometimes such a set is not solvable by matching asa whole, but it can be solved by a sequential matching, that is, by considering theequations one at a time.To formalize this idea we introduce the following notion.De�nition 8.2.5 Let E = E1; : : : ; En be a left-right disjoint sequence of (sets of)equations.� We say that E is solvable by sequential matching if E is uni�able implies thatfor some substitutions �1; : : : ; �n, and for i 2 [1; n]- Ei�1 : : : �i�1 is left-right disjoint,- �i is a match for Ei�1 : : : �i�1.� We say that E is solvable by sequential matching wrt � if � is a permutation of1; : : :; n, and- E�(1); : : : ; E�(n) is solvable by sequential matching. 2Note that when �1; : : : ; �n satisfy the above two conditions, then by Lemma 8.2.2�1�2 : : : �n is a relevant mgu of E.This De�nition corresponds to the one considered byMaluszynski and Komorowski[70], and is slightly less general than the one of iterated matching given in [7], whichmakes no explicit reference to the order in which the equations are to be solved. In-tuitively, E is solvable by iterated matching i� there exists a � such that E is solvableby sequential matching wrt �.Uni�cation Free ProgramsRecall that the aim of this chapter is to clarify for what Prolog programs uni�cationcan be replaced by sequential matching. The following De�nition is then the key one.Here we denote by rel(A) the relation symbol of the atom A.De�nition 8.2.6� Let � be an LD-derivation. Let A be an atom selected in � and H the headof the input clause selected to resolve A in �. Suppose that A and H have thesame relation symbol. Then we say that the system A = H is considered in �.� Suppose that each system of equations A = H considered in the LD-derivationsof P [fQg is solvable by sequential matching wrt a permutation �rel(A), where�rel(A) is uniquely determined by the relation symbol of A. Then we say thatP [fQg is uni�cation free. 2A slightly more exible de�nition of uni�cation-free program was given in Apt-Etalle [7], where the equation A = H may be solvable by iterated matching, i.e. thesequence � needs not to be determinable from the relations symbol of A.

8.3. Types and Modes 1638.3 Types and ModesThe main tools that we are going to use in this chapter are types and modes. Thefollowing very general de�nition of type is su�cient for our purposes.De�nition 8.3.1� A type is a set of atoms with the same relation symbol;� A type is a type for a relation symbol p. 2Notice that, as opposed to [7], here we are also considering types which are not closedunder substitution.For the purpose of this chapter, types for relations are always built by suitablycombining set of terms.De�nition 8.3.2� A term type is a set of terms. 2Here, we sometimes overload the term type to denote either a type or a term type;the actual meaning will be clear from the context.Certain term types will be of special interest:U | the set of all terms,Var | the set of variables,List | the set of lists,BinTree | the set of binary trees,Ground | the set of ground terms.Of course, the use of the term type List assumes the existence of the empty list []and the list constructor [.|.] in the language, and the use of the type Nat assumesthe existence of the numeral O and the successor function s(.), etc.The following notation will be used throughout the chapter. Let p be an n-aryrelation symbol, and let T1; : : : ; Tn be term types. we denote byp : T1 � : : :� Tnthe type for p given by the following set of atoms.fp(t1; : : : ; tn) j for i 2 [1; n]; ti 2 TigGiven a program P , a typing for P is a function that associate to each relationsymbol p in P a type of the form p : T1 � : : :� Tn, consequently we also say that Tiis the term type associated to the i-th position of p.We need one �nal De�nition.De�nition 8.3.3 Let p : T1 � : : :� Tn be the type for p.� We say that an atom p(t1; : : : ; tn) is correctly typed in his i-th position if ti 2 Ti;� We say that an atom p(t1; : : : ; tn) correctly typed if it is correctly type in all itspositions. 2

164 Chapter 8. On Uni�cation-Free Prolog ProgramsIn the sequel we assume that each program has a (n often unspeci�ed) typingassociated to. The typing speci�es how the argument of a relation should be used:as a general rule, we expect that the atoms selected in a LD-derivation are correctlytyped (to make sure of this we'll introduce appropriate tools). Consider for instancethe well-known program append:app([X | Xs], Ys, [X | Zs]) app(Xs, Ys, Zs).app([], Ys, Ys).append can be used for concatenating two lists, and this can be reected by theadoption of the following \natural" typing:app : List� List� V arThis typing expresses the fact that each time an atom of the form :- append(s, t,u) is selected in by the (leftmost) selection rule, we expect s and t to be lists, and uto be a variable. Multiple typings can be obtained by simply renaming the relations.Before introducing modes, we need a last de�nition.De�nition 8.3.4� We call an atom (resp. a term) a pure atom (resp. pure term) if it is of theform p(~x) with ~x a sequence of di�erent variables.� Two atoms (resp. terms) are called disjoint if they have no variables in com-mon. 2To study solvability by matching, we keep in special consideration the followingterm types.� V ar - the set of all variables;� Pt - the set of variables and pure terms;� U - the set of all terms.Notice that V ar � Pt � U . According to the typing used, we'll make somedistinctions among the positions of an atom. Consider the case of a selected atom Aand the head H of an input clause used to resolve A. In presence of types, we expectA to be correctly typed. It is then natural to consider the positions of A which aretyped Var or Pt, which are �lled in by variables or pure terms as output positions, asthey contain no information. On the other hand for those positions which are typedU , since we really have no clue over the kind of parameter-passing that will take placein them, we use the special name of U -positions. The remaining positions will thenby convention be considered as input. These considerations are at the base of thefollowing De�nition.De�nition 8.3.5 Let p : T1� : : :�Tn be the type of the relation symbol p. We callthe i-th position of an atom p(t1; : : :; tn)� A U-position if Ti = U� An output position if Ti = V ar or Ti = Pt;� An input position otherwise. 2

8.4. Avoiding Uni�cation using the modes \U" and \output" 165This classi�cation is actually a moding. Modes for logic programs were �rstconsidered by Mellish [75] and then more extensively studied in Reddy [83] and inDembinski and Maluszynski [35]. Here we are departing from the previous works byusing also the mode U , which can be seen as a way to avoid to commit ourselves toa speci�c mode when such a commitment is not necessary.8.4 Avoiding Uni�cation using the modes \U" and\output"In order to introduce the tools we need in a gradual manner, we begin by excludingthe presence of input positions.Surprisingly, in many cases, this restriction does not represent a problem: inorder to pass the information from the selected atom to the head of the input clausewe can still use the U-positions. Consider for instance again the program append,as we mentioned before, when it is used for concatenating two lists, the \natural"typing isappend: List� List� V ar.Now, if we want to avoid the presence of input positions, we can simply use thefollowing typing.append: U � U � V arNotice that the �rst two positions are U-positions, while the third one is and outputone. The only practical di�erence between this and the \natural" typing is that in thequery app(s, t, u) we now allow s and t to be any term, rather than just list. Thisis obviously no restriction. In general, using the U -positions for the parameter-passingtask has the advantage of exibility: since every term belongs to U we are makinghere no a priori assumption on the structure of the data. Moreover, as we'll showin the rest of this Section, proving uni�cation-freeness is in this context particularlysimple.Throughout this Section we assume that the atoms have only U- and outputpositions: by De�nition 8.3.5 this is equivalent to considering typings built only withthe following term types: U , V ar and Pt.Sequential Matching via Pure TermsWe start with a simple test allowing us to determine whether a given set of equationsis solvable by matching.Lemma 8.4.1 (Matching 1) Consider two disjoint atoms A and H with the samerelation symbol. Suppose that� one of them is ground or pure.Then A = H is solvable by matching.

166 Chapter 8. On Uni�cation-Free Prolog ProgramsProof. Clear. 2Now let us go back to the example of the (correctly typed) selected atomA and thehead H of a clause used to resolve it. In order to apply the Matching 1 Lemma 8.4.1to the part of A = H corresponding to the U -positions, since we have no informationabout the shape of the terms �lling in the U -positions of A, we have to impose somerestrictions on H. Here we call a family of terms linear if every variable occurs atmost once in it.De�nition 8.4.2 (U-safe�) An atom H is called U-safe� if the family of terms�lling in its U -positions is linear and consists of only variables and pure terms. 2The minus sign in U-safe� is motivated by the fact that in Section 8.5 we'llintroduce a more general de�nition of U -safeness, which will also take into accountthe presence of input positions. We need now one further notion.De�nition 8.4.3 An atom A is called output independent if each term occurring inan output position is disjoint from the rest of A. 2Now we prove a result allowing us to conclude that A = H is solvable by sequentialmatching.Lemma 8.4.4 (Sequential Matching 1) Consider two disjoint atoms A and Hwith the same relation symbol p. Suppose that p has no input positions. If� A is correctly typed and output independent,� H is U -safe�,then there exists a permutation � such that A = H is solvable by sequential matchingwrt �.In particular, A = H is solvable by sequential matching wrt any permutation � of1; : : :; n such that, according to the order given by �(1); : : :; �(n), we have that theU -positions of p come �rst and the output positions come last.Proof. Suppose that A = H is uni�able, we can then assume that A is p(s1; : : :; sn)and that H is equal to p(t1; : : :; tn), where s1; : : :; sn; t1; : : :; tn have been reordered insuch a way that U -positions come �rst (on the left) and the output positions are therightmost ones.We now need to prove that s1 = t1; : : :; sn = tn is solvable by sequential matching,that is we need to �nd �1; : : :; �n such that each �i is a match of (si = ti)�1 : : : �i�1.For each i, we distinguish upon the kind of position where the equation si = ti isfound.If si = ti is found in a U -position then, since H is U -safe�, we have that ti isa variable or a pure term and Var (ti) \ Var(�1 : : : �i�1) = ;, so ti�1 : : : �i�1 is stilla variable or a pure term and by the Matching 1 Lemma 8.4.1 (si = ti)�1 : : : �i�1 issolvable by matching.Finally, if si = ti is found in an output position then, from the assumptions wemade on A, it follows that si is a variable or a pure term and thatVar (si) \ Var(�1; : : : ; �i�1) =

8.4. Avoiding Uni�cation using the modes \U" and \output" 167;. So si�1; : : : ; �i�1 is still a variable or a pure term, and by the Matching 1 Lemma8.4.1 (si = ti)�1 : : : �i�1 is solvable by matching. 2When A and H satisfy the conditions of this Lemma, we can then solve A = H bysequentially matching one position at a time. Still, we can improve on this result byshowing that there exist some subsets of A = H which correspond to more than oneposition and which can be solved by a single matching. This issue will be discussedin the Appendix.We need one further notion.De�nition 8.4.5 We call an LD-derivation i/o driven if all atoms selected in it arecorrectly typed and output independent. 2i/o driven derivations were introduced in [7], but the de�nition we give here ismore general than the previous one. This is due to the fact that now we consider alsoU -positions, and that we allow Pt as a term type for the output positions (in [7] theonly term type allowed for the output positions is V ar).The Sequential Matching Lemma 8.4.4 allows us to combine the notions of U -safeatom and of i/o driven derivation for concluding that P [fQg is uni�cation free.Theorem 8.4.6 Suppose that each predicate symbol occurring in P has no inputpositions. If� the head of every clause of P is U -safe�,� all LD-derivations of P [fQg are i/o driven.Then P [fQg is uni�cation free. 2Taking care of the output positions: Nicely Typed programsIn order to apply Theorem 8.4.6 we need to �nd conditions which imply that allconsidered LD-derivations are i/o driven. Since here we exclude the existence ofinput positions, all we have to do is to ensure that the selected atom A is correctlytyped in its output position and output independent. For this we'll introduce the newconcept of Nicely Typed program.We start with the following notion which was introduced in Chadha and Plaisted[27]. Here we use the notation of Apt and Pellegrini [9]: when writing an atom asp(~r; ~o), we now assume that ~o is the sequence of terms �lling in the output positionsof p, while that ~r is the sequence of terms �lling its remaining positions.De�nition 8.4.7 (Nicely Moded)� A query p1(~r1; ~o1); : : :; pn(~rn; ~on) is called nicely moded if ~o1; : : : ~on is a linearfamily of terms and for j 2 [1; n]Var(~rj) \ (n[k=j Var(~ok)) = ;: (8.1)

168 Chapter 8. On Uni�cation-Free Prolog Programs� A clause p0(~r0; ~o0) p1(~r1; ~o1); : : :; pn(~rn; ~on)is called nicely moded if p1(~r1; ~o1); : : :; pn(~rn; ~on) is nicely moded andVar(~r0) \ (n[k=1Var (~ok)) = ;: (8.2)In particular, every unit clause is nicely moded.� A program is called nicely moded if every clause of it is. 2Thus, assuming that in every atom the output positions are the rightmost ones,a query is nicely moded if� every variable occurring in an output position of an atom does not occur earlierin the query.And a clause is nicely moded if� every variable occurring in an output position of a body atom occurs neitherearlier in the body nor in a non-output position of the head.So, intuitively, the concept of being nicely moded prevents a \speculative binding"of the variables which occur in output positions | these variables are required to be\fresh".From the de�nition it follows that, if the query is nicely moded, then the selectedatom is output independent. In order to ful�ll the requirements of i/o drivenness wealso ask the output positions to be correctly typed. For this reason we introduce afurther De�nition. Here and in the sequel, given an atom A, we denote by VarOut(A)the set of variables occurring in the output positions of A. Similar notation is usedfor sequences of atoms.De�nition 8.4.8 (Nicely Typed)� A nicely moded query ~B is called nicely typed if it is correctly typed in itsoutput positions.� a nicely moded clause H ~B is called nicely typed if ~B is nicely typed, andeach term t �lling in a position of H of type Pt satis�es the followingIf t is a variable and t \ V arOut(~B) 6= ; then t �lls in a position of ~B of type Pt.(8.3)� A program is called nicely typed if every clause of it is. 2Nicely typed programs can be seen as a generalization of simply moded programsof [7]. The additional condition (8.3) that we impose on the clauses is needed toensure the persistence of the notion of being nicely typed, which is proven in thefollowing key Lemma.Lemma 8.4.9 An LD-resolvent of a nicely typed query and a disjoint with it nicelytyped clause is nicely typed. 2

8.4. Avoiding Uni�cation using the modes \U" and \output" 169Proof. Consider a nicely typed query A; ~A and a disjoint with it nicely typed clauseH ~B, such that A and H unify. Take as E0 the subset of A = H corresponding tothe non-output positions, and as E1; : : : ; En the subsets of A = H each correspondingto an output position.The proof is divided in steps.Claim 8.1 There exist �0; : : : ; �n such that, for i 2 [0; n],(a) �i is a relevant mgu of Ei�0 : : : �i�1,(b) ~B�0; : : : ; �i is correctly typed in its output positions.Proof. We proceed by induction.Base case: i = 0.Let �0 be any relevant mgu of E0. Since H ~B is nicely moded, the variablesin VarOut(~B) do not occur in the non-output positions of H, therefore the outputpositions of ~B are not a�ected by �0. Since by hypothesis ~B is correctly typed in itsoutput positions, ~B�0 is correctly typed in its output positions as well.Induction step: i > 0.Let Ei � s = t, where s and t are the terms �lling the i-th output position respectivelyof A and H. First notice that since A is nicely moded, the variables of s do not occuranywhere else in A. Moreover, from the disjointness hypothesis (and the relevanceof each �i) it follows then that Var(s) \ Var(�0 : : : �i�1) = ;. Therefore we have thats�0 : : : �i�1 = sKeep in mind that by the inductive hypothesis ~B�0 : : : �i�1 is correctly typed inits output positions, and that s = s�0 : : : �i�1. Since A is nicely typed, s may onlybe a variable or a pure term. Let us consider those two cases separately, and let ussuppose that s isa variable. Then we can take �i to be exactly [s=t�0 : : : �i�1]. Therefore Dom(�i) =s, and ~B�0 : : : �i�1 is not a�ected by �i, and the result follows from the inductivehypothesis.a pure term. Since A is nicely typed, the type of the the i-th output position of A(and H) must be Pt. Let �i be any relevant mgu of s�1 : : : �i�1 = t�1 : : : �i�1We have to distinguish three cases:First we consider the case in which t�0 : : : �i�1 is a variable and it occurs inVarOut(~B�0 : : : �i�1). Obviously, in this case t itself is a variable as well. Nownotice that if r is any term �lling in an output position of ~B then we have thatif Var(r�0 : : : �i�1) \ t�0 : : : �i�1 6= ; then Var(r) \ t 6= ; (8.4)In other words, if r is disjoint from t then also r�0 : : : �i�1 is disjoint fromt�0 : : : �i�1. This is due to the fact that, since H ~B is nicely moded, thevariables of r may not occur in the input positions of H but only in the outputones, and, since A is output independent, the substitutions �0 : : : �i�1 cannotbind them to other variables of H ~B.

170 Chapter 8. On Uni�cation-Free Prolog ProgramsSince t�0 : : : �i�1 occurs in VarOut(~B�0 : : : �i�1), from (8.4) it follows that t oc-curs in VarOut(~B). Furthermore, from (8.4) and the fact that H ~B is nicelytyped it follows that t�0 : : : �i�1 �lls in an output position of ~B�0 : : : �i�1, and(being H ~B nicely moded) it does not occur anywhere also in ~B�0 : : : �i�1.Now, s�0 : : : �i�1 is a pure term and t�0 : : : �i�1 is a variable, therefore we havethat t�0 : : : �i�1�i is a pure term, and, since t�0 : : : �i�1 �lls in an output pos-ition of ~B�0 : : : �i�1 of type Pt, from the inductive hypothesis it follows that~B�0 : : : �i�1�i is correctly typed in its output positions.Secondly, if t�0 : : : �i�1 is a variable and it does not occur inVarOut(~B)�0 : : : �i�1,then the output positions of ~B�0 : : : �i�1 are not a�ected by �i, and the resultfollows by the inductive hypothesis.Finally, if t�0 : : : �i�1 is not a variable, then, since s�0 : : : �i�1(= s) is a pureterm, and since (s = t)�0 : : : �i�1 is uni�able, we have that t�0 : : : �i�1 is aninstance of s�0 : : : �i�1. We can then take �i such that Dom(�i) = s�0 : : : �i�1.It follows that t�0 : : : �i�1 is not a�ected by �i Consequently, ~B�0 : : : �i�1 is nota�ected by �i as well and the result follows from the inductive hypothesis.This ends the proof of Claim 8.1. 2Now let � = �0 : : : �i. By Lemma 8.2.2 � is a relevant mgu of A = H. So far wehave established that~B� is correctly typed in its output positions. (8.5)In order to prove that also (~B; ~A)� is nicely typed we have to go through a fewmore steps.Claim 8.2 ~A� is correctly typed in its output position.Proof. ~A is nicely moded, therefore VarOut(~A) \ Var(A) = ;. Since � is relevant,from the disjointness hypothesis it follows then that Var(�) \ VarOut(~A) = ;. Since~A is correctly typed in its output position, also ~A� is. 2Finally we have thatClaim 8.3 (~B; ~A)� is nicely moded.Proof. This is due to the fact that the resolvent of a nicely moded query and a(disjoint with it) nicely moded clause is nicely moded (Apt and Pellegrini in [9,Lemma 5.3]). 2From (8.5) and the last two Claims it follows that (~B; ~A)� is nicely typed. Now� = �1 : : : �n is just one speci�c mgu of A = H. By Lemma 8.2.1 every other mgu ofA = H is of the form �� for a renaming �. But a renaming of a nicely typed queryis nicely typed, so we conclude that every LD-resolvent of A; ~A and H ~B is nicelytyped. 2The following is an immediate consequence of Lemma 8.4.9 which will be soonneeded.

8.4. Avoiding Uni�cation using the modes \U" and \output" 171Corollary 8.4.10 Let P and Q be nicely typed, and let � be an LD-derivation ofP [fQg. All atoms selected in � are correctly typed in their output positions andare output independent. 2Avoiding Uni�cation with Nicely Typed ProgramsRecall that in order to prove that P [fQg is uni�cation-free using Theorem 8.4.6 weare looking for conditions which imply that all the LD-derivations starting inQ are i/odriven and that, since we are excluding the presence of input positions, this reducesto requiring that the selected atom are correctly typed in their output positions andoutput independent. By Corollary 8.4.10 the concept of being nicely typed is the onewe need.Lemma 8.4.11 Suppose that each predicate symbol p occurring in P has no inputpositions. If� P and Q are nicely typed.Then all LD-derivations of P [fQg are i/o driven.Proof. This follows directly form Corollary 8.4.10. 2We can now state the main result of this Section.Theorem 8.4.12 Suppose that each predicate symbol p occurring in P has no inputpositions. If� P and Q are nicely typed,� the head of every clause of P is U -safe�Then P [fQg is uni�cation free.Proof. From Lemma 8.4.11 and Theorem 8.4.6 2This result, though rather simple, can be applied to a large number of programs.Example 8.4.13(i) Consider again the program append, together with the following typing:app : U � U � PtFirst note that append is nicely typed and that the head of both clauses are U -safe�.Now let t, s be terms, and u be a variable (or a pure term), disjoint from t, s;append(t,s,u) is then a nicely typed query, and, from Theorem 8.4.12, it followsthat append [f app(s, t, u)g is uni�cation free.(ii) append can be used not only for concatenating two lists, but also for splitting alist in two. This is reected by the adoption of the following typing:app : Pt� Pt� UAgain, append is nicely typed, and the head of both clauses are U -safe�. Theorem

172 Chapter 8. On Uni�cation-Free Prolog Programs8.4.12 yields that, for disjoint terms u, v ,t, where u and v are variables or pureterms, append [f app(u, v, t)g is uni�cation free.(iii) Let us now consider the following permutation program:perm(Xs, Ys) Ys is a permutation of the list Xs.perm(Xs, [X | Ys]) app1(X1s, [X | X2s], Xs),app2(X1s, X2s, Zs),perm(Zs, Ys).perm([], []).augmented by the app1 and app2 programs.Where both app1 and app2 are renamings of the append program; we use here twodistinct renamings in order to adopt two di�erent types, namelyapp1 : Pt� Pt� Uapp2 : U � U � PtBy the previous example we have that both app1 and app2 are nicely typed. Let usconsider the following typing:perm : U � PtIt is easy to check that perm is nicely typed, and that both clause's heads are U -safe�.Hence, when u a variable or a pure term disjoint from t, permutation [f perm(t,u)g is uni�cation free. 2More examples of programs and typings that satisfy the hypothesis of Theorem8.4.12 are provided by the list in Section 8.7.8.5 Avoiding Uni�cation using also the mode \in-put"In the previous Section we have been using only the modes U and output. Thereforethe parameter passing from the selected atom to the head of the input clause wasalways done via the U-positions. As we remarked before, this has the advantage ofexibility, as there is no assumption on the data structure used. However, in somecases, if we can be more precise about the kind of data structure is being used, we'llbe able to broaden the range of of programs and queries that we can prove to beuni�cation-free. Consider for instance the well-known member program.member(Element, List) Element is an element of the list List.member(X, [X | Xs]).member(X, [Y | Xs]) member(X, Xs).It is easy to check (see Example 8.6.7 for a formalization of this statement) whenthe typing is member : Pt � U , member satis�es the conditions of Theorem 8.4.12,

8.5. Avoiding Uni�cation using also the mode \input" 173therefore if s is in Pt and t is disjoint from s, then member [f member(s, t) gis uni�cation-free. On the other hand, it is also easy to (manually) check that if weknow that t is ground, then we can drop the assumption that s is in Pt: member [f member(s, t) g is still uni�cation-free. In order to capture this situation, we needan extension of Theorem 8.4.12 that is applicable when the typing adopted is member: U �Ground. In this situation, according to the convention of De�nition 8.3.5, thesecond position is moded as input.In this Section we provide the tools necessary to handle the presence of inputpositions. First notice that by De�nition 8.3.5, the input positions of an atom areexactly the ones that are not typed Var, Pt or U . Consequently, considering alsoinput positions tantamounts to considering also term types which are not in f Var,Pt, U g.The new types we interested in are monotonic, that is, they are closed undersubstitution. This property will simplify a lot the discussion.De�nition 8.5.1 We call a term type T monotonic i�, for each substitution �� t 2 T implies t� 2 T 2From now on we make the following Assumption.Assumption 8.5.2� with the exception of term types Var, Pt, all the term types we refer to aremonotonic. 2Notice that types Ground, U are by de�nition monotonic. Recall that we assumealso that the type associated to a relation symbol p is always of the form p : T1� : : :�Tn. The basic implication of Assumption 8.5.2 is then that the Tis corresponding tothe input positions are always monotonic term types.Sequential Matching via Generic ExpressionsGeneric expressions were introduced by Apt-Etalle in [7], and can be used to obtaina new interesting condition for solvability by matching. For example, assume thestandard list notation and consider a term t = [x; yjz] with x; y and z variables. Notethat (despite the fact that t is not a pure term), whenever a list l uni�es with t, thenl is an instance of t, i.e l = t is solvable by matching.Thus solvability by matching can be sometimes deduced from the shape of theconsidered terms. In this subsection we will follow closely Apt and Etalle [7], and webegin with the following De�nition.De�nition 8.5.3 Let T be a term type. A term t is a generic expression for T iffor every s 2 T disjoint with t, if s uni�es with t then s is an instance of t. 2In other words, t is a generic expression for the term type T i� all left-rightdisjoint equations s = t, where s 2 T , are solvable by matching.Example 8.5.4� 0; s(x); s(s(x)); : : : are generic expressions for the term type Nat,

174 Chapter 8. On Uni�cation-Free Prolog Programs� []; [x]; [xjy]; [x; yjz]; : : : are generic expressions for the term type List. 2Note that a generic expression for T needs not to be a member of T .Next, we provide some important examples of generic expressions which will beused in the sequel. Here and in the following we call a (term) type T ground ifall its elements are ground, and non-ground if some of its elements is non-ground;consequently the non-ground positions of an atom H are those positions of H whoseassociated term type is not a ground type.Lemma 8.5.5 Let T be a term type. Then� variables are generic expressions for T ,� the only generic expressions for the term type U are variables,� if T does not contain variables, then every pure term is a generic expressionfor T ,� if T is ground, then every term is a generic expression for T .Proof. Clear. 2When the term types are de�ned by structural induction (as for example in Bron-sard, Lakshman and Reddy [23] or in Yardeni, T. Fr�uhwirth and E. Shapiro [98]),then it is easy to characterize the generic expressions for each type by structuralinduction.We can now provide another simple test for establishing solvability by matching.Lemma 8.5.6 (Matching 2, [7]) Consider two disjoint atoms A and H with thesame relation symbol. Suppose that� A is correctly typed,� the positions of H are �lled in by mutually disjoint terms and each of them isa generic expression for its positions type.Then A = H is solvable by matching. Moreover, if A and H are uni�able, then asubstitution � with Dom(�) � Var(H) exists such that A = H�.Proof. Clear. 2Consider again the case of a selected atom A and the head H of a clause usedto resolve A. In presence of arbitrary term types, in order to apply the Matching 2Lemma 8.5.6 to the subset of A = H corresponding to the input positions, we haveto impose some restrictions on H.De�nition 8.5.7 An atom H is called input safe if each term t �lling in a non-ground input position of H satis�es the following two conditions:(i) t is a generic expression for this positions type,(ii) t is disjoint from all the other terms occurring in the non-ground input positionsof H. 2We also need to upgrade the De�nition of U-safe� atom in order to take intoaccount the presence of input positions.

8.5. Avoiding Uni�cation using also the mode \input" 175De�nition 8.5.8 (U-safe) An atom H is called U-safe if for each term t �lling inone of its U -positions one of the following two conditions holds:(i) t is a variable or a pure term and it is disjoint from the terms occurring in theinput and the other U -positions of H;(ii) each variable occurring in t appears also in an input position of H of groundtype. 2Note that when there are no input positions this De�nition coincides with the oneof U -safe� atom.The above two conditions reect two di�erent way in which we can apply theMatching 1 Lemma 8.4.1 to the U -positions of A = H: the �rst conditions ensuresthat the term in the position we are considering is a variable or a pure term, and thatit is not a�ected by the matching of the input and the other U -positions. On the otherhand the second makes sure that after having matched the input positions of A = H,the term will be ground, so that the Matching 1 Lemma will still be applicable.The above De�nitions allow us to generalize Lemma 8.4.4 to the case in which wehave also input positions.Lemma 8.5.9 (Sequential Matching 2) Consider two disjoint atoms A and Hwith the same relation symbol. If� A is correctly typed and output independent,� H is input safe and U -safe,Then there exists a permutation � such that A = H is solvable by sequential matchingwrt �.In particular, A = H is solvable by sequential matching wrt any permutation of1; : : :; n such that, according to the order given by �(1); : : :; �(n), we have that thenon-ground input positions of p come �rst, the ground input positions come next, theU -positions come after them and the output positions come last.Proof. Suppose that A = H is uni�able, we can then assume that A and H are equalrespectively to p(s1; : : :; sn) and p(t1; : : :; tn), where s1; : : :; sn; t1; : : :; tn have beenreordered in such a way that non-ground input positions come �rst (on the left),the ground (input) positions come next, the U -positions come third and the outputpositions are the rightmost ones.We now need to prove that s1 = t1; : : :; sn = tn is solvable by sequential matching,that is we need to �nd �1; : : :; �n such that each �i is a match of (si = ti)�1 : : : �i�1.Let Ti be the term type associated to the i-th position of p. Each equation si = ticorresponds to one position of A = H, we now distinguish four cases upon the kindof position the equation si = ti corresponds to.First we consider the case when si = ti corresponds to a non-ground input posi-tion. SinceH is input safe, ti is a generic expression for Ti and Var(ti) \ Var(�1 : : : �i�1) =;, so ti�1 : : : �i�1 is still a generic expression for Ti and, since �1 : : : �i�1 are relevant,ti�1 : : : �i�1 is disjoint from si�1 : : : �i�1. Moreover, A is correctly typed, thus si be-longs to Ti, and, since by Assumption 8.5.2, Ti is monotonic, si�1 : : : �i�1 belongs to

176 Chapter 8. On Uni�cation-Free Prolog ProgramsTi as well. From the Matching 2 Lemma 8.5.9 it follows then that (si = ti)�1 : : : �i�1is solvable by matching.Second, we consider the case when si = ti corresponds to a ground input posi-tion. Since A is correctly typed, si is a ground term. From the Matching 1 Lemma8.4.1 it follows then that (si = ti)�1 : : : �i�1 is solvable by matching. Moreover, iftj; : : : ; tk are the terms found in the ground input position of H, we also have that(tj; : : : ; tk)�1 : : : �k are ground terms.Third, if si = ti is found in a U -position then, depending on which of the twoconditions of U -safeness is satis�ed we have that: (i) ti is a variable or a pure termand Var(ti) \ Var (�1 : : : �i�1) = ;, so ti�1 : : : �i�1 is still a variable or a pure termand by the Matching 1 Lemma 8.4.1 (si = ti)�1 : : : �i�1 is solvable by matching;(ii) Var(ti) � Var(tj; : : : ; tk) and, by the order hypothesis, the equations 1; : : : ; khave already been processed, from what noticed before it follows that ti�1 : : : �i�1is a ground term, and again, by the Matching 1 Lemma 8.4.1, (si = ti)�1 : : : �i�1 issolvable by matching.Finally, if si = ti is found in an output position then si is a variable or a pure termand, since A is output independent, Var (si) \ Var(�1; : : : ; �i�1) = ;. So si�1; : : : ; �i�1is still a variable or a pure term, and by theMatching 1 Lemma8.4.1 (si = ti)�1 : : : �i�1is solvable by matching. 2This allows us to generalize Theorem 8.4.6. Recall that an LD-derivation is calledi/o driven if all atoms selected in it are correctly typed and output independent.Theorem 8.5.10 Suppose that� the head of every clause of P is input safe and U -safe,� all LD-derivations of P [fQg are i/o driven.Then P [fQg is uni�cation free. 2Taking care of the input positions: Well-Typed ProgramsIn order to apply Theorem 8.5.10, we need again to �nd some conditions su�cientto ensure that the LD-derivations will be i/o-driven. As in the previous Section, theoutput positions will be taken care of by the fact that the programs we consider arenicely typed. Consequently, our concern is now to guarantee that the selected atomswill be correctly typed in their input positions. In presence of arbitrary term types,the task is not trivial.Substantially, the approach that we follow here is originally due to Bossi andCocco [17], where it was used for proving partial correctness. We use the conceptof Well-Typed program, which was introduced by Bronsard, Lakshman and Reddy[23], and we adopt the notation of Apt [4].We begin with the following De�nition, where we assume that the input positionsof atom are grouped on the left.De�nition 8.5.11 Let rel(A) : T1 � : : :� Tn be the type associated to the relationsymbol of the atom A. Assume that the input positions of A are its leftmost mpositions, then

8.5. Avoiding Uni�cation using also the mode \input" 177� the pre-type for rel(A) is the typeprerel(A) : T1 � : : :� Tm � U � : : :� Uand it is obtained by projecting rel(A) : T1� : : :� Tn onto its input positions.2The pre-type of rel(A) is then uniquely determined by the type of rel(A); thereforefrom the assumption that each relation symbol has always a type associated to it itfollows that each relation symbol has automatically also a pre-type associated to. Theadvantage of referring to the pre-type instead of the type is that by Assumption 8.5.2the pre-type is always monotonic.To give the de�nition of Well-Typed program we need two more notions.De�nition 8.5.12 Let A1; : : :; An+1 be atoms and T1; : : :;Tn+1 be monotonic types� By a type judgement we mean a statement of the formj= A1 2 T1 ^ : : : ^ An 2 Tn) An+1 2 Tn+1which denotes that, for all substitutions �, Dom(�) = V ar(A1; : : :; An):if A1� 2 T1 ^ : : : ^ An� 2 Tn then An+1� 2 Tn+1 2Recall that in order to apply Theorem 8.5.10, we have to prove that each selectedatom belongs to its pre-type; to do this we use type judgements and associate to eachrelation symbol also a post-type.De�nition 8.5.13 A post-type for a relation symbol p, is a monotonic type for p. 2From now on we assume that each relations symbol has, together with the type,also a post-type associated to it.As opposed to the type, we want the post-type to contain information aboutthe state of the arguments of a query after the query itself has been successfullyresolved. For example, consider again the program append. A typical typing forit is app: List � List � Pt1. This formalizes the idea that when and atom of theform app(s, t, u) is selected, we expect s and t to be variables and u to be avariable, or, at most, a pure term. On the other hand, we require the post-type tohold some knowledge over the situation of s, t and u after that the query app(s,t, u) has been successfully resolved. In this situation a natural post-type would bepostapp : List� List� List, indicating that, after app(s, t, u) has succeeded, wealso expect u to be a list. Notice also that when the type adopted is the above one,the the pre-type is preapp : List� List� U .In the following we write pre(A) (resp. post(A)) as shorthand for A 2 prerel(A)(resp. A 2 prerel(A)), where prerel(A) and postrel(A) are the pre- and post-type of therelation symbol of A.1This is a slight extension of the \natural" typing app: List � List � V ar that we mentioned inSections 8.3 and 8.4

178 Chapter 8. On Uni�cation-Free Prolog ProgramsDe�nition 8.5.14� A query A1; : : :; An is called well-typed if, for j 2 [1; n],j= post(A1) ^ : : : ^ post(Aj�1)) pre(Aj):� A clause H B1; : : :; Bn is called well-typed if, for j 2 [1; n+ 1],j= pre(H) ^ post(B1) ^ : : : ^ post(Bj�1)) pre(Bj);where pre(Bn+1) := post(H).� A program is called well-typed if every clause of it is. 2Thus, a query is well-typed if� the pre-type of an atom can be deduced from the post-types of previous atoms.And a clause is well-typed if� (j 2 [1; n]) the pre-type a body atom can be deduced from the pre-type of thehead and the post-types of the previous body atoms,� (j = n+1) the post-types of the head can be deduced from the pre-type of thehead and the post-types of the body atoms.In particular a query A is well-typed i� j= pre(A), while a unit clause A iswell-typed i� j= pre(A)) post(A).The following result states the persistence of the notion of being well-typed (seeBossi-Cocco [17] or an account of it Apt-Marchiori [10]).Lemma 8.5.15 (Persistence) An LD-resolvent of a well-typed query and a well-typed clause that is variable disjoint with it, is well-typed. 2This brings us to the following conclusion.Corollary 8.5.16 Let P and Q be well-typed, and let � be an LD-derivation ofP [fQg. Then every atom selected in � is correctly typed in its input positions.Proof. A variant of a well-typed clause is well-typed and for a well-typed queryA1; : : :; An we have j= pre(A1). 2Avoiding Uni�cation with Well+Nicely Typed ProgramsRecall that in order to prove that P [fQg is uni�cation-free using Theorem 8.4.6we are looking again for conditions which imply that all the LD-derivations startingin Q are i/o driven: we want that the selected atom is correctly typed and outputindependent.The combination of the concepts of being well-typed and being nicely typed allowsus to deal with all the cases in which the types used satisfy Assumption 8.5.2: well-typedness takes care of the input position, while nicely typedness takes care of theoutput ones.Lemma 8.5.17 Suppose that

8.5. Avoiding Uni�cation using also the mode \input" 179� P and Q are nicely typed and well-typed.Then all LD-derivations of P [fQg are i/o driven.Proof. It follows from Corollaries 8.5.16 and 8.4.10. 2This brings us to the main result of this chapter.Theorem 8.5.18 (Main) Suppose that� P and Q are nicely typed and well-typed,� the head of every clause of P is input safe and U -safeThen P [fQg is uni�cation free.Proof. From Lemma 8.5.17 and Theorem 8.5.10. 2In particular, from the Sequential Matching 2 Lemma 8.5.9 it follows that each ofthe equations A = H considered in the LD-derivations can be solved by sequentiallymatching (one by one) each of the atoms positions, provided that we observe thefollowing order: �rst the nonground input positions, then the ground input positions,after that the U -positions and �nally the output ones. In the Appendix we'll showhow we can improve on this result by grouping some positions under the same match.It is not di�cult to check that this Theorem 8.5.18 generalizes our previous result,Theorem 8.4.12. Indeed if the program P and the query Q satisfy the conditions ofTheorem 8.4.12, then, since the atoms have no input positions, we have that theheads of the clauses of P are trivially input-safe and, by assigning to each predicatesymbol p the trivial post-type p : U � : : :�U , we have that P and Q are well-typed.Therefore P and Q satisfy the hypothesis of Theorem 8.5.18 as well.Example 8.5.19 Consider now the program permutation sort which is often usedas a benchmark program.ps(Xs, Ys) permutation(Xs, Ys), ordered(Ys).permutation(Xs, [Y | Ys]) select(Y, Xs, Zs),permutation(Zs, Ys).permutation([], []).select(X, [X | Xs], Xs).select(X, [Z | Xs], [Z | Zs]) select(X, Xs, Zs).ordered([]).ordered([X]).ordered([X, Y | Xs]) X � Y, ordered([Y| Xs]).Let us associate to it the following typing,

180 Chapter 8. On Uni�cation-Free Prolog Programstype post-typeps : List� Pt List� Listpermutation : List� Pt List� Listselect : Pt� List� Pt U � List� Listordered : List ListNow, permutation sort is well-typed and nicely typed. Moreover, the heads ofall clauses are input safe and U -safe2. By the Main Theorem 8.5.18 we get that fora list s and a disjoint with it variable or pure term t, permutation sort [f ps(s,t)g is uni�cation free.Observe that the terms [X] and [X, Y | Xs], �lling in the input positions of,respectively, the �rst and the third clause de�ning the relation ordered, are genericexpressions for List, but are not pure terms. In a sense we could say that [X] and[X, Y | Xs] are nontrivial generic expressions. 28.6 A simpler special case: Ground input positionsSometimes, a lot of the machinery needed by Theorem 8.5.18 is actually superuous.In particular, this happens when the input positions are all of ground type. Inthis case, instead of requiring the program to be well-typed, we can use the morerestrictive concept of well-moded program. This has two relevant advantages:First, that we do not need to associate a post-type to each relation symbol.Second, while checking that a program is well-typed is an algorithmically intract-able problem, testing well-modedness can be done in polynomial (quadratic) time.A discussion on the algorithmic tractability of the concepts used in this chapter isreported in Section 8.6.1.In this Section we'll assume that the only term type used for the input positions inGround. Informally, this means that the information we pass to the program consistsalways of ground terms. By De�nition 8.3.5 this is equivalent to assuming that weuse types which are built using only the following term types: Ground, Pt, Var, U.Well-Moded programsThe concept of Well-Moded program is essentially due to Dembinski and Maluszynski[35]; here we make use of the elegant formulation of Rosemblueth [85] and of the samenotation of [7]. In particular, when writing an atom as p(~u; ~v), we now assume that~u is a sequence of terms �lling in the input positions of p and that ~v is a sequenceof terms �lling in the output and the U -positions of p (notice that this shorthand isdi�erent from the one used for De�nition 8.4.7).De�nition 8.6.12The latter statement is trivial, as there are no U -positions: the fact that U appears in a post-typeis of no relevance here.

8.6. A simpler special case: Ground input positions 181� A query p1(~s1; ~t1); : : :; pn(~sn; ~tn) is called well-moded if for i 2 [1; n]Var(~si) � i�1[j=1Var(~tj):� A clause p0(~t0; ~sn+1) p1(~s1; ~t1); : : :; pn(~sn; ~tn)is called well-moded if for i 2 [1; n+ 1]Var(~si) � i�1[j=0Var(~tj):� A program is called well-moded if every clause of it is. 2Thus, a query is well-moded if� every variable occurring in an input position of an atom (i 2 [1; n]) occurs in anon-input position of an earlier (j 2 [1; i� 1]) atom.And a clause is well-moded if� (i 2 [1; n]) every variable occurring in an input position of a body atom occurseither in an input position of the head (j = 0), or in a non-input position of anearlier (j 2 [1; i� 1]) body atom,� (i = n+1) every variable occurring in an non-input position of the head occursin an input position of the head (j = 0), or in an output position of a bodyatom (j 2 [1; n]).It is important to notice that the concept of a well-moded program (resp. query)is a particular case of that of a well-typed program. Indeed, if the only term typeused for the input positions is Ground , and the post-type associated to each relationsymbol p is p : Ground � : : : � Ground, then the notions of a well-typed program(resp. query) and a well-moded program (resp. query) coincide.The following Lemma states the persistence of the notion of being well-moded. Aproof of it can be found in Apt and Marchiori [7].Lemma 8.6.2 An LD-resolvent of a well-moded query and a disjoint with it well-moded clause is well-moded. 2The next result is originally due to Dembinski and Maluszynski and follows dir-ectly from the de�nition of well-moded program.Corollary 8.6.3 Let P and Q be well-moded, and let � be an LD-derivation ofP [fQg. All atoms selected in � contain ground terms in their input positions. 2

182 Chapter 8. On Uni�cation-Free Prolog ProgramsAvoiding Uni�cation with Well-Moded Nicely Typed ProgramsAs we anticipated at the beginning of this Section, here we assume that the onlyterm type used for the input position is Ground, this is equivalent to making thefollowingAssumption 8.6.4 In this subsection we each predicate symbol has a type associatedto it of the form p : T1� : : :� Tn, where for i 2 [1; n], Ti 2 fGround; V ar; P t; Ug. 2Once again we are going to use Theorem 8.4.6 for proving that P [fQg isuni�cation-free. Therefore we are looking again for conditions which imply that allthe LD-derivations starting in Q are i/o driven: the selected atoms in a LD-derivationneed to be correctly typed and output independent. As in the previous two Sections,the concept of being nicely typed will take care of the output positions.Since we are assuming that the input positions are always of ground type, fromCorollary 8.6.3 it follows that well-modedness is what we need for taking care of theinput positions.Lemma 8.6.5 If Assumption 8.6.4 is satis�ed and� P and Q are nicely typed and well-moded.Then all LD-derivations of P [fQg are i/o driven.Proof. Let A be a selected atom in an LD-derivation of P [fQg. By Corollary 8.6.3the input positions of A are correctly typed, and by Corollary 8.4.10, A is correctlytyped in its output positions is output independent. 2This, together with Theorem 8.4.6, brings us to the following conclusion.Theorem 8.6.6 If Assumption 8.6.4 is satis�ed and� P and Q are nicely typed and well-moded,� the head of every clause of P is U -safeThen P [fQg is uni�cation free.Proof. It follows directly from Lemma 8.6.5 and Theorem 8.4.6. 2It is easy to check that this is a special case of Theorem 8.5.18: if P and Q satisfyits hypothesis, then P and Q are well-moded and, as we mentioned before, well-moded programs (and queries) are a special case of well-typed programs in whichthe only term type used for the input positions is Ground. Therefore P and Q satisfyalso the condition of being well-typed, moreover, we also have that the heads of Pare (trivially) input safe. Consequently P and Q satisfy the hypothesis of Theorem8.5.18 as well.Example 8.6.7(i) First, let us go back to what we stated at the beginning of Section 8.5, and let usconsider again the program member. With the typing member:U�Ground, member iswell-moded and (trivially, as there are no output positions) nicely typed; moreover,

8.6. A simpler special case: Ground input positions 183all clause's heads are U -safe. By Theorem 8.6.6 if t is a ground term, then, for anys, member [f member(s, t)g is uni�cation free.Let us compare this with what we could have obtained by using the result (namely,Theorem 8.4.12) given in the Section 8.4. Without using input positions we can provethat, when the following type is used:member : Pt� Uthen member is nicely typed and all clause's heads are U -safe. By Theorem 8.4.12this implies that if s is a variable or a pure term disjoint from t, then member [fmember(s, t)g is uni�cation free. In this case, the advantage of Theorem 8.6.6 overTheorem 8.4.12 is that we can allow s to be any term. The price we have to pay forthis is that Theorem 8.6.6 requires t to be ground. Symmetrically, Theorem 8.4.12imposes no conditions on t (which can be then a nonground list, or any other term)but requires s to be a variable or a pure term.Notice also that, when the above types are used, Theorem 8.6.6 is not applicable,as the program is not well-moded. This shows that Theorem 8.6.6 is not more generalthat Theorem 8.4.12.(ii) Consider now the MapColor program:color map(Map, Colors) Map is correctly typed using Colors.color map([Region | Regions], Colors) color region(Region, Colors),color map(Regions, Colors),color map([],).color region(Region, Colors) Region and its neighbors are correctly colored using Colors.color region(region(Name, Color, Neighbors) , Colors) select(Color, Colors, ColorsLeft),subset(Neighbors, ColorsLeft).select(X, Xs, Zs) Zs is the result of deleting one occurrence of X from the list Zs.select(X, [X | Xs], Xs).select(X, [Z | Xs], [Z | Zs]) select(X, Xs, Zs).subset(Xs, Ys) each element of the list Xs is also an element of the list Ys.subset([X | Xs], Ys) member(X, Ys), subset(Xs, Ys).subset([] ,).augmented by the member program.Let us associate to it the following typing:

184 Chapter 8. On Uni�cation-Free Prolog Programscolor map : U �Groundcolor region : U �Groundselect : U �Ground � Ptsubset : U �Groundmember : U �GroundIt is straightforward to check that with the above typing, MapColor is well-modedand nicely typed. Since the head of all clauses are U -safe, by Theorem 8.6.6 we havethat, if t is a ground term, then, for any s, color map [f color map(s, t)g isuni�cation free. 2It is worth noticing that the U -positions have been used in (at least) two oppositeways: in Section 8.4 we they were actually used as \input" positions, in the sensethat they were used to transfer information from the selected atom to the head ofthe clause used to resolve it, while in Section 8.6 they were more used as \output".This becomes noticeable in the moment that we compare Example 8.4.13 with Ex-ample 8.6.7. However, it should be mentioned that this distinction is not always soclear: consider for instance the program select (which is a subprogram of the aboveMapColor): A query select(s, t, u) can be used in two main ways: to deletethe element s from the list t and report the result in u, or as a generalized memberprogram, to report in s an element of t, and in u the remains of the list. In the �rstcase the �rst position is used as \input", in the second as \output", but for bothcases we can simply use the typing select : U �Ground�Pt. In this case the modeU takes care of the ambivalence of the �rst position. Notice also that when we adoptthis typing the hypothesis of Theorem 8.6.6 are satis�ed, therefore if t is ground, uis in Pt and s is disjoint from s then select[select(s, t, u) is uni�cation-free.8.6.1 Comparing Theorems 8.4.12, 8.5.18 and 8.6.6: e�ciencyissuesTheorem 8.5.18 is a generalization of Theorems 8.4.12 and 8.6.6, but the latter twoare much more suitable for being used in an automatic way.In fact, it is worth noticing that the applicability conditions of Theorems 8.4.12and 8.6.6 can be statically and e�ciently tested: in order to check that a program isnicely typed, well-moded and the head of its clauses are input safe, one can easily�nd some naive algorithms whose complexity is quadratic in the size of the clausesand linear in the number of clauses in a program. Indeed, all three concepts requireprocedures like the following one.

8.7. What have we done and what have we not done 185for each clause cl in P dofor each variable v occurring in cl dobegincheck that all the other occurrences of v in cl satisfy therequired conditions (this require re-scanning cl)endOn the other hand, to test the hypothesis of Theorem 8.5.18 one needs to checkif some type judgements hold, and this is a much more complex problem, in fact,for arti�cially built types, it can even be undecidable. Aiken and Lakshman in [2]have investigated the problem of checking type judgements for monotonic types:they prove that it is EXPTIME-hard and they state that no upper bound is known,moreover, they show that also in the case that we use only discriminative types3 thenthe problem has a a lower complexity bound of PSPACE, and a upper bound ofNEXPTIME. In other words, even in this more restrictive case, the problem remainshighly untractable.Thus, checking the conditions of Theorems 8.4.12 and 8.6.6 is much simpler thanchecking the ones of Theorem 8.5.18, moreover, by checking the list in Section 8.7, onecan easily realise that the practical cases in which Theorem 8.5.18 is really useful area minority: in most cases Theorems 8.4.12 and 8.6.6 are su�cient for our purposes.8.7 What have we done and what have we not doneWhat have we done: the ListTo apply the established results to a program and a query, one needs to �nd ap-propriate typings for the considered relations such that the conditions of one of theTheorems 8.4.12, 8.5.18 or 8.6.6, are satis�ed. In the table below several programstaken from the book of Sterling and Shapiro [94] are listed. For each program it isindicated for which typings these theorems are applicable.In programs which use di�erence-lists we replace \n" by \,", thus splitting aposition �lled in by a di�erence-list into two positions. Because of this change insome relations additional arguments are introduced, and so certain clauses have tobe modi�ed in an obvious way. For example, in the parsing program on page 258each clause of the form p(X) r(X) has to be replaced by p(X,Y) r(X,Y). Suchchanges are purely syntactic and they allow us to draw conclusions about the originalprogram.We also report between parenthesis typings which are \subsumed" by other typ-ings in the list, that is, typings for which there exists another typing which is more3a discriminative type is a type built using to some speci�c rules which include a �xpoint setconstruction; according to Aiken and Lakshman \The important restriction of discriminative setexpressions are that no intersection operation is allowed and all union are formed from expressionswith distinct outermost constructor". In any case, discriminative types are descriptive enough tobe able to handle all the examples presented here.

186 Chapter 8. On Uni�cation-Free Prolog Programsgeneral. We report them here because they provide further examples of typings wrtwhich these programs are (uni�cation-free and) well-typed (or well-moded).program page Thm. Typingmember 45 8.4.12 Pt� U8.6.6 U �Ground(8.5.18)(Pt � List)pre�x 45 8.4.12 Pt� U8.6.6 Ground �Ground(8.6.6) (Pt�Ground)(8.5.18)(Pt � List)su�x 45 8.4.12 Pt� U8.6.6 Ground �Ground(8.6.6) (Pt�Ground)(8.5.18)(Pt � List)naive reverse 48 8.4.12 U � Pt8.6.6 Ground � U(8.5.18)(List� Pt)reverse-accum. 48 8.4.12 U � Pt, U � U � Pt8.6.6 Ground � U , Ground �Ground � U(8.5.18)(List� Pt, List� List� Pt)delete 53 8.5.18 Ground � U � Pt8.5.18 Ground � U �Ground(8.6.6) (Ground �Ground � Pt)select 53 8.4.12 Pt� U � Pt8.4.12 U � Pt� U8.6.6 U �Ground � Pt8.6.6 Ground �Ground �Ground(8.6.6) (Ground �Ground � Pt)(8.5.18)(Pt � List� Pt)insertion sort 55 8.4.12 s : U � Pt, i : U � U � Pt(8.6.6) (s : Ground � Pt, i : Ground �Ground � Pt)(8.5.18)(s : List� Pt, i : U � List� Pt)quicksort 56 8.4.12 q : U � Pt, p : U � U � V ar � V ar(8.6.6) (q : Ground � Pt, p : Ground �Ground � V ar � V ar)(8.5.18)(q : List� Pt, p : U � List� Pt)

8.7. What have we done and what have we not done 187tree-member 58 8.4.12 Pt� U8.6.6 U �Ground8.6.6 Ground �Ground(8.5.18)(Pt �BinTree)isotree 58 8.4.12 U � Pt8.4.12 Pt� U8.6.6 Ground �Ground(8.6.6) (Ground � Pt)(8.6.6) (Pt�Ground)(8.5.18)(BinTree� Pt)(8.5.18)(Pt �BinTree)substitute 60 8.5.18 U � U �Ground � Pt8.5.18 U � U � Pt�Ground8.5.18 U � U �Ground �Ground(8.6.6) (Ground �Ground �Ground � Pt)(8.6.6) (Ground �Ground � Pt�Ground)pre-order 60 8.4.12 U � Pt8.6.6 Ground � U(8.5.18)(BinTree� Pt)in-order 60 8.4.12 U � Pt8.6.6 Ground � U(8.5.18)(BinTree� Pt)post-order 60 8.4.12 U � Pt8.6.6 Ground � U(8.5.18)(BinTree� Pt)polynomial 62 8.6.6 Ground � Uderivative 63 8.6.6 Ground � U � Pt8.6.6 Ground � U �Groundhanoi 64 8.4.12 U � U � U � U � Pt8.6.6 U �Ground �Ground �Ground � Ureverse dl 244 8.4.12 r : U � Pt, r dl : U � Pt� U8.6.6 r : Ground � U , r dl : Ground � U �Ground(8.5.18)(r : List� Pt, r dl : List� Pt� List)

188 Chapter 8. On Uni�cation-Free Prolog Programsdutch 246 8.4.12 dutch : U � Pt, di : U � Pt� Pt� Pt8.6.6 dutch : Ground � U , di : Ground � Pt� Pt� Ptdutch dl 246 8.4.12 dutch : U � Pt, di : U � Pt� Pt� Pt� Uparsing 258 8.6.6 all Ground � UWhat have we not doneStill, there are some natural programs that when executed do not require uni�cation,while they cannot be proven uni�cation-free using our method. We are aware of thefollowing two examples: quicksort dl and flatten dl [94, pag. 244, 241].First, let us consider quicksort dl.qs(Xs, Ys) qs dl(Xs, Ys, []).qs dl([X | Xs], Ys, Zs) partition(X, Xs, Littles, Bigs),qs dl(Littles, Ys, [X|Y1s]),qs dl(Bigs, Y1s, Zs).qs dl([], Xs, Xs).partition(X, [Y | Xs], [Y | Ls], Bs) X > Y, partition(X, Xs, Ls, Bs).partition(X, [Y | Xs], Ls, [Y | Bs]) X � Y, partition(X, Xs, Ls, Bs).partition(X, [], [], []).By looking at the trace of the program, it is easy to see that, if t is a list ands is a variable disjoint with t, then quicksort dl[f qs(t, s) g is uni�cation free.Indeed, if we use the following types:qs : List� V arqs dl : List� V ar � Upartition : U � List� V ar � V arthen we have that the heads of all the clauses are input safe and U -safe, moreover, wecan check \by hand" that, if f qs(t, s) g is correctly typed and output independent,all LD-derivations of quicksort dl [f qs(t, s) g are i/o driven, therefore, byTheorem 8.5.10, quicksort dl [f qs(t, s) g is uni�cation-free. The problemhere is that the program is not nicely typed: Y1s appears �rst in the U -positionof qs dl(Littles, Ys, [X|Y1s]) and then in the output position of qs dl(Bigs,Y1s, Zs), therefore, with the tools in our possession, we cannot prove that thederivations are i/o driven, in particular we can't show that each time that an atomof the form qs dl(t, s, r) is selected, s will be a variable4.Now, let us consider the program flatten dl.4It may be interesting to notice that, if we want to prove \by hand" that this program isuni�cation-free, then the key step is indeed represented by showing that each time that an atom ofthe form qs dl(t, s, r) is selected, s will be a variable.

8.7. What have we done and what have we not done 189flatten(Xs, Ys) flatten dl(Xs, Ys, []).flatten dl([X | Xs], Ys, Zs) flatten dl(X, Ys, Ys1),flatten dl(Xs, Ys1, Zs).flatten dl(X, [X | Xs], Xs) constant(X), X 6= [].flatten dl([], Xs, Xs).Incidentally, the reasons why we cannot flatten dl to be uni�cation-free are thesame ones found for the program quicksort dl. If we associate to it the followingtypes:flatten : Ground � V arflatten dl : Ground � V ar � UWe have that the heads of all the clauses are input safe and U -safe, and, in the casethat t is a list and s is a variable disjoint with t, all LD-derivations of flatten dl[f flatten(t, s) g are i/o driven, therefore, by Theorem 8.5.10, flatten dl [f flatten(t, s) g is uni�cation-free. Again, the problem here is that the programis not nicely typed: Y1s appears �rst in the U -position of flatten dl(X, Ys, Ys1)and then in the output position of flatten dl(Xs, Ys1, Zs); consequently, withour tools we cannot guarantee the i/o drivenness of the derivations.In the literature we do �nd tools that would enable us to prove these two pro-grams to be uni�cation-free, namely asserted programs. Assertions can be viewedas extension of types, and provide a more expressive formalism for proving run-timeproperties like groundness of terms and independence of variables (see Apt-Marchiori[10]). Two are the reasons why we decided not to use assertions in this chapter: inthe �rst place, the machinery involved is far more complicated and computationallyexpensive than with types, and when we use types in full generality we already facethe algorithmically intractable problem of checking type judgements. Secondly, theonly two programs that we know of that can be proven to be uni�cation-free usingassertions and not with types are precisely flatten dl and quicksort dl. Sum-marizing, we strongly believe that the gain in generality is far not worth the loss inclarity and e�ciency.Of course, the results of this chapter allow us to can prove quicksort dl andflatten dl are uni�cation-free wrt the following types:qs : Ground �Groundqs dl : Ground �Ground � Upartition : Ground �Ground � V ar � V arflatten : Ground �Groundflatten dl : Ground �Ground � UHowever this are not the natural typings for these programs: for instance they requirethat in the queries qs(t, s) and flatten(t, s) both t and s are ground terms. Inpractice we have to know the result of the computation in advance.

190 Chapter 8. On Uni�cation-Free Prolog ProgramsWhat cannot be done: when is uni�cation neededConsidering the surprisingly large number of programs that could be proven to beuni�cation-free, in [7] we raised the question of whether uni�cation was actuallyintrinsically needed in Prolog programs: \A canonic example (of a program requiringuni�cation) is the Prolog program curry which computes a type assignment to alambda term, if such an assignment exists (see e.g. Reddy [84]). We are not awareof other natural examples, though it should be added that for complicated querieswhich anticipate in their output positions the form of computed answers, almost anyprogram will necessitate the use of uni�cation."In one year we have been running into a couple of interesting examples. The �rstone is the program append dl [94, Pag. 241].append dl(As, Bs, Cs) the di�erence-list Cs is the result concatenating the di�erence-lists As and Bs.append dl(Xs n Ys, Ys n Zs, Xs n Zs).append dl can concatenate the di�erence lists As and Bs in constant time, a relevantimprovement over the ordinary append, which takes linear time. However, it is easyto see that in most cases append dl does requires the use uni�cation.A second example is provided by the Prolog formalization of a problem fromCoelho and Cotta [31, pag. 193]: arrange three 1's, three 2's, ..., three 9's in sequenceso that for all i 2 [1; 9] there are exactly i numbers between successive occurrencesof i.sublist(Xs, Ys) Xs is a sublist of the list Ys.sublist(Xs, Ys) app(, Zs, Ys), app(Xs, , Zs).sequence(Xs) Xs is a list of 27 elements.sequence([,]).question(Ss) Ss is a list of 27 elements forming the desired sequence.question(Ss) sequence(Ss),sublist([1, ,1, ,1], Ss),sublist([2, , ,2, , ,2], Ss),sublist([3, , , ,3, , , ,3], Ss),sublist([4, , , , ,4, , , , ,4], Ss),sublist([5, , , , , ,5, , , , , ,5], Ss),sublist([6, , , , , , ,6, , , , , , ,6], Ss),sublist([7, , , , , , , ,7, , , , , , , ,7], Ss),sublist([8, , , , , , , , ,8, , , , , , , , ,8], Ss),sublist([9, , , , , , , , , ,9, , , , , , , , , ,9], Ss).augmented by the append program.In this case Prolog provides a straightforward and elegant way of formalizing theproblem, however by looking at the trace of the execution it is easy to check that, inorder to run properly, the program fully uses uni�cation.

8.8. Conclusions 1918.8 ConclusionsRelations with [7]This chapter can be seen as an extension of Apt and Etalle [7]. Technically, themain di�erences between this and [7] can be summarized as follows:� In [7] only input and output positions are considered while here we introduceand use U -positions as well.� In [7] the only terms that are allowed to �ll in the output positions of the queriesare variables. Here, by using the type Pt, we often allow the presence of pureterms, and this broadens the class of programs and queries that we can proveto be uni�cation-free.� Like in here, in [7], the programs considered needed always to be well-typed5,however, the de�nition of well-typed programs used in [7] is more restrictivethan the present ones.The practical consequence of these facts are manifold.� The results can be applied to a larger class of programs.Examples of programs that could not be handled with the tools of [7] and thatcan be handled now are permutation and color map.� The results can be applied to a larger class of queries.In almost all cases, programs which could be handled in [7] can be now handledbetter, i.e. the class of allowed queries is now broader. To give a simpleexample, let us consider the program member. Using the tools of [7], we canprove to be uni�cation-free wrt the following typings:(1) member: Ground �Ground,(2) member: V ar �Ground,(3) member: V ar � ListOn the other hand, using the tools given in this chapter we can prove memberto be uni�cation-free wrt the following typings:(a) member: U �Ground(b) member: Pt� UIt is easy to see that the typing (a) is more general than both (1) and (2), while(b) is more general than both (2) (again) and (3): the class of queries for whichwe can prove uni�cation freedom is now quite larger, and we can do this usinga reduced number of di�erent typings (two instead of three), thus reducing themachinery involved in the proof.� The hypothesis of the theorems are often checkable in a much more e�cientway.In order to provide an example, let us consider again the member program,together with the typings given above. First recall that the typing (b) is more5recall that in the discussion after Theorem 8.5.18 we showed that, by appropriately choosing thetype and the post-type for a relation symbol, all the programs that satisfy the conditions of Theorem8.4.12 or the ones of Theorem 8.6.6 are well-typed.

192 Chapter 8. On Uni�cation-Free Prolog Programsgeneral that both typings (2) and (3). Now, an important advantage of (b)over (3) is the following: in order to use (3) we have to use Theorem 30 of[7]6 which requires to check some non-trivial type judgement, and this is, asdiscussed before, an algorithmically intractable problem. On the other hand,in order to prove uni�cation freedom using typing (b), can use Theorem 8.4.12,our simplest result, whose hypothesis can be simply and e�ciently tested.This situation is not incidental: by looking at the list of programs reported in[7, Section 8]7 and comparing it with the one in Section 8.7 of this chapter, wesee that in most of the cases in which we had some nonground input positions,we could simply turn these positions into U -positions, and prove uni�cationfreedom using Theorem 8.4.12 instead of Theorem 30 of [7], both enlarging theclass of allowed queries and simplifying dramatically the process of proving thatthe program is uni�cation-free.Other related workAnother recent related work is the one of M. Marchiori [71]: Marchiori concentrateson Well-Moded programs and studies maximal localizations of the property of beingUni�cation-Free. In order to compare his paper with our chapter we have to introducea bit of notation. Let us be brief and informal.We say that a property P is local if for any two programs P and Q that satisfyit, we have that the program P [Q satis�es P as well. In other words, P is local ifit can be checked clause by clause. For instance the property \P is Well-Moded andNicely typed wrt the typing T " is local, while the property \there exists a typingT such that P is Well-Moded and Nicely typed wrt it" is not local, as we need totraverse the program more than once to check it (eventually we have to try di�erentT s). We also say that a property Q is more general than P if each program thatsatis�es P satis�es Q as well.Now, the question addressed in [71] is the following:� assume that to each relation symbol is already associated a typing of the formp : T1 � : : :� Tn, where, for each i, Ti 2 fGround; Ug. (8.6)we want to �nd (if it exists) a local property P such that{ each program that satis�es P is Well-Moded (wrt the give typing (8.6));{ each program that satis�es P is Uni�cation-Free;{ P is maximal, that is, there is no other local property Q which is moregeneral than P and that satis�es the above two conditions.6Roughly speaking, [7, Theorem 30] is a restricted version of Theorem 8.5.18, and it is the mostgeneral result of [7].7the reader who actually does so has to be warned that the notation is a bit di�erent: for instancethe type select ({:U, +:List, {:List) of [7] corresponds to our type select:Var, List, Var. togetherwith the post-type select:U, List, List.

8.9. Appendix: reducing the number of matches 193In [71] it is proven that such properties exist, in particular two of them are de�nedin detail8. Of course there exist other maximal properties that satisfy the aboveconditions.Summarizing, the goal of [71] is quite di�erent from our own: [71] focuses moreon the theoretical aspects of local properties in the context of well-moded program,while here we want to provide (possibly simple) tools for proving uni�cation freedomfor a (possibly) large class of programs and queries. Indeed the class of programsand queries for which we can prove uni�cation freedom is substantially larger thanin [71]; this is mainly due to two reason: �rstly, because restricting to the class ofWell-moded program already narrows sensibly the set of allowed queries (recall thatof the programs of the List, the ones that are Well-Moded are the ones which areproven to be Uni�cation-Free via Theorem 8.6.6); secondly, because local propertiesare, at least in this context, intrinsically rather weak.8.9 Appendix: reducing the number of matchesLet A = p(~s) and H = p(~t) be two atoms. We know that if the hypothesis of theSequential Matching 2 Lemma 8.5.9 are satis�ed, then the equations in ~s = ~t aresolvable, one at a time, by matching.Here we want to show that some subsets of ~s = ~t containing more than one equa-tion can be solved by a single matching. This reduces the total number of matchingsneeded to solve ~s = ~t, and results in an e�ciency gain: since there are parallel al-gorithms for term matching that run in polilogarithmic time [36, 37], matching morepositions at once increases the execution speed.Lemma 8.9.1 Consider two disjoint atoms A = p(~s) and H = p(~t) with the samerelation symbol. Assume that A correctly typed and output independent, and thatH is input safe and U -safe. Let us now divide the set of equations ~s = ~t into thefollowing subsets: let� ~s1 = ~t1 be the subset of ~s = ~t corresponding to the nonground input positions.� ~s2 = ~t2 be the subset of ~s = ~t corresponding to the ground input positions.� ~s3 = ~t3 be the subset of ~s = ~t corresponding to the U -positions with respect towhich H satis�es condition (ii) of U -safeness (De�nition 8.5.8).� ~s4 = ~t4 be the subset of ~s = ~t corresponding to those of the remaining U -positions of H which are �lled in by a variable.� s5 = t5; : : : ; sk = tk be the subsets of ~s = ~t such that for i 2 [5; k], each si = ticorresponds to one of the remaining U -positions.� sk+1 = tk+1; : : : ; sl = tl be the subsets of ~s = ~t such that for i 2 [k + 1; l], eachsi = ti corresponds to a position of type Pt.� ~sl+1 = ~tl+1 be the subset of ~s = ~t corresponding to the positions typed V ar.8These two properties are named \(the property of being) Flatly-Well-Moded" and \coFlatly-Well-Moded"

194 Chapter 8. On Uni�cation-Free Prolog ProgramsThen~s1 = ~t1; ~s2 = ~t2; ~s3 = ~t3; ~s4 = ~t4; s5 = t5; : : : ; sk = tk; sk+1 = tk+1; : : : ; sl = tl; ~sl+1 = ~tl+1is solvable by sequential matching.Here notice that ~s1 = ~t1, ~s2 = ~t2, ~s3 = ~t3, ~s4 = ~t4 and ~sl+1 = ~tl+1 are sets ofequations, and these are precisely the subsets of ~s = ~t whose content can be processedby a single matching.Proof. We proceed as in the proof of Lemma 8.5.9: we'll �nd some substitutions�1; : : : ; �l such that, for i 2 [1; l + 1], �i is a match of (si = ti)�1 : : : �i�1 (here, forthe sake of precision, for i 2 f1; 2; 3; 4; l + 1g, we should have used bold letters, andwritten (~si = ~ti)). We have to consider seven distinct cases.In ~s1 = ~t1, since H is input safe, each term in ~t1 is a generic expressions for thetype of the positions it corresponds to; moreover, the terms in ~t1 are pairwise disjoint.Since A is correctly typed, from the Matching 2 Lemma 8.5.6 it follows that ~s1 = ~t1is solvable by matching. Let �1 be a match of ~s1 = ~t1.In (~s2 = ~t2)�1, since A is correctly typed, the terms in ~s2 are all ground. By theMatching 1 Lemma 8.4.1 (~s2 = ~t2)�1 is then solvable by matching. Let �2 be a matchof it, and notice that ~t2�1�2 is a set of ground terms.In (~s3 = ~t3)�1�2, becsuse of the way ~s3 = ~t3 was de�ned, we have that V ar(~t3) �V ar(~t2), therefore ~t3�1�2 is a set of ground terms. Again, by the Matching 1 Lemma8.4.1 (~s3 = ~t3)�1�2 is then solvable by matching. Let �3 be a match of it.In (~s4 = ~t4)�1�2�3, by the way ~s4 = ~t4 was de�ned, ~t4 consists of distinct variables,moreover Var (~t4) \ Var (~t1; : : : ; ~t3) = ;. By the relevance of �1; �2; �3 (a match isalways a relevant mgu) we then have that ~t4�1�2�3 is a set of distinct variables.Again, by the Matching 1 Lemma 8.4.1 (~s4 = ~t4)�1�2�3 is then solvable by matching.Let �4 be a match of it.The equations (s5 = t5; : : : ; sk = tk; sk+1 = tk+1; : : : ; sl = tl)�1 : : : �4 are thensolvable (one at a time) by sequential matching. This follows at once from the proofof the Sequential Matching 2 Lemma 8.5.9. In particular we have that: for i 2 [5; k],sinceH is U -safe, ti�1 : : : �i�1 is a variable or a pure term, while for i 2 [k+1; l], sinceA is correctly typed and output independent, si�1 : : : �i�1 is a variable or a pure term;here we (inductively) assume that for i 2 [5; l], �i is a match of (si = ti)�1 : : : �i�1.Finally, in (~sl+1 = ~tl+1)�1 : : : �l, sinceA is correctly typed and output independent,from the relevance of �1; : : : ; �l it follows that the terms in ~sl+1�1 : : : �l are all distinctvariables. Therefore, by the Matching 1 Lemma 8.4.1, (~sl+1 = ~tl+1)�1 : : : �l is solvableby matching. This proves the Lemma. 2In practice, Lemma 8.9.1 states that we can solve by a single matching each ofthe following groups of positions:� the nonground input positions.� the ground input positions.� the U -positions with respect to which H satis�es condition (ii) of U -safeness(De�nition 8.5.8).

8.9. Appendix: reducing the number of matches 195� those of the remaining U -positions of H which are �lled in by a variable.� the positions typed V ar.While the remaining positions should be processed one by one. These are� the remaining U -positions.� the position of type Pt.The following Example shows that these last positions actually need to be processedone at a time.Example 8.9.2(i) Consider A = p(x; f(x; x)) and H = p(g(y); f(z;w)), together with the typingp : U �U . We have that A is correctly typed and that H is U -safe. Since herethere are no input nor output positions, it follows that the hypothesis of theSequential matching 2 Lemma 8.5.9 are satis�ed, therefore A = H is solvableby sequential matching. However A = H is not solvable by matching, as thereis no � such that A� = H or A = H�. This shows that the U positions ofH which are �lled in by pure terms and for which H satis�es condition (i) ofU -safeness (De�nition 8.5.8) need to be processed one at a time.(ii) A perfectly symmetric reasoning applies for the positions typed Pt: considerA = p(y; f(z;w)) and H = p(x; x), together with the typing p : Pt� Pt. A iscorrectly typed and output independent, and since there are no input and U -positions, this is su�cient to satisfy the hypothesis of the Sequential 2 Lemma8.5.9. Therefore A = H is solvable by sequential matching, but not by a simplematching. As before, this is con�rmed by the fact that there is no � such thatA� = H or A = H�. 2Lemma 8.9.1 is an improved version of the Sequential Matching 2 Lemma 8.5.9,which in turn was the crucial step of Theorem 8.5.18. Therefore, its basic implicationis that, when A and H are respectively the selected atom and the head of the inputclause used to resolve it, then some positions of A = H can be grouped in the samematch (while others may not).For this reason, in some situations, we might �nd convenient to adopt a typingwhich is more restrictive than another one, but which allows us to prove that we cansolve the equations in the LD-derivations with a smaller number of matchings.Consider for instance once again the program append, suppose that we want touse it for splitting a ground list in two. We might then want to adopt the followingtyping: T1 = app : Pt� U �GroundHere the (only) input position in the third one. From Theorem 8.6.6 it follows that,if t is a ground list, r is in Pt, then, for any term s disjoint from s, append [fapp(r, s, t)g is uni�cation free.However, if the kind of queries we are interested in are the ones in which the �rsttwo positions of append are �lled in by variables (and this is a common situation),then we might �nd convenient to use the following typing:

196 Chapter 8. On Uni�cation-Free Prolog ProgramsT2 = app : V ar � V ar �GroundOf course T2 is more restrictive than T1: every query that is correctly typed wrt T2is also correctly typed wrt T1 (and not vice-versa). However, when we adopt T1,the best that we can prove is that all the equations considered in the LD-derivationsof append [f app(r, s, t)g are solvable by triple matching: �rst we match therightmost position, then we match the middle one, and �nally we match the leftmostone. On the other hand, if we adopt T2, from Lemma 8.9.1 it follows that all theequations considered in the LD-derivations of append[f app(r, s, t)g are solvableby double (rather than triple) matching: �rst we match the rightmost position, thenwith a single match we can take care of the �rst two ones. Of course this holdsprovided that the queries satisfy the conditions of Theorem 8.5.18 wrt the adoptedtyping, and that is when they are correctly typed and output independent.Finally, as a further example consider again the program select, which is re-ported in Example 8.6.7. As we mentioned in the discussion after Example 8.6.7, aquery select(s, t, u) can be used in two main ways: to delete the element s fromthe list t and report the result in u, or as a generalized member program, to reportin s an element of t, and in u the remains of the list. For both cases we can use thetyping T1 = select : U �Ground � PtWhen we use this typing, (assuming that the query satis�es the hypothesys of The-orem 8.5.18), from Lemma 8.9.1 it follows that all the equations condidered in theLD derivations of select [f select(s, t, u) g are solvable by triple matching.However, when select is used in the �rst of the ways outlined above, then the�rst two arguments of the query are possibly ground terms. This allows us to use thetyping T2 = select : Ground �Ground � Ptin this case, by Lemma 8.9.1, the equations considered in LD-derivations of select[f select(s, t, u) g are solvable by double matching: �rst we match simultan-eously the �rst two positions, then we match the third one.A similar reasoning applies when we want to use select only as a generalizedmember program: we can reduce the number of matching needed in the LD-derivationsby restricting the range of allowed queries, in particular by adopting the followingtyping: T3 = select : V ar �Ground � V arIn this case, from Lemma 8.9.1 it follows that the equations considered in theLD-derivations are again solvable by double matching, but this time we (obviously)match �rst the second position (the input one) and then, simultaneously, the �rst andthird one (again, here we naturally assume that the queries satisfy the conditions ofTheorem 8.5.18).

Bibliography
[1] L. Aiello, G. Attardi, and G. Prini. Towards a more declarative programmingstyle. In E. J. Neuhold, editor, Proc. of the IFIP Conference on Formal De-scription of Programming Concepts, pages 121{137. North-Holland, 1978.[2] A. Aiken and T.K. Lakshman. Type checking directionally typed logic programs.Technical report, Department of Computer Science, University of Illinois atUrbana Champaign, november 1993.[3] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume B: Formal Models and Se-mantics, pages 495{574. Elsevier, Amsterdam and The MIT Press, Cambridge,1990.[4] K. R. Apt. Program veri�cation and prolog. In E. B�rgher, editor, Speci�c-ation and validation methods for programming languages and systems. OxfordUniversity Press, 1994. to appear.[5] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,9(3&4):335{363, 1991.[6] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative know-ledge. In editor J. Minker, editor, Foundation of Deductive Databases and LogicProgramming, pages 89{148. Morgan Kaufmann, 1988.[7] K. R. Apt and S. Etalle. On the uni�cation free Prolog programs. InA. Borzyszkowski and S. Sokolowski, editors, Proceedings of the Conference onMathematical Foundations of Computer Science (MFCS 93), Lecture Notes inComputer Science, pages 1{19, Berlin, 1993. Springer-Verlag.[8] K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog pro-grams. Information and Computation, 106(1):109{157, 1993.[9] K. R. Apt and A. Pellegrini. Why the occur-check is not a problem. InM. Bruynooghe and M. Wirsing, editors, Proceedings of the Fourth InternationalSymposium on Programming Language Implementation and Logic Programming(PLILP 92), Lecture Notes in Computer Science 631, pages 69{86, Berlin, 1992.Springer-Verlag.[10] K.R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes197

198 Bibliographythrough types to assertions. Technical Report CS-R9358, CWI, Amsterdam,The Netherlands, 1993. Available via anonymous ftp at ftp.cwi.nl, or via xmosaicat http://www.cwi.nl/cwi/publications/index.html.[11] C. Aravidan and P. M. Dung. Partial deduction of logic programs w.r.t. well-founded semantics. In H. Kirchner G. Levi, editor, Proceedings of the ThirdInternational Conference on Algebraic and Logic Programming, pages 384{402.Springer-Verlag, 1992.[12] C. Aravidan and P. M. Dung. On the correctness of Unfold/Fold transformationof normal and extended logic programs. Technical report, Division of ComputerScience, Asian Institute of Technology, Bangkok, Thailand, April 1993.[13] I. Attali and P. Franchi-Zannettacci. Uni�cation-free execution of TYPOL pro-grams by semantic attribute evaluation. In R.A. Kowalski and K.A. Bowen,editors, Proceedings of the Fifth International Conference on Logic Program-ming, pages 160{177. The MIT Press, 1988.[14] N. Bensaou and I. Guessarian. Transforming Constraint Logic Programs. InF. Turini, editor, Proc. Fourth Workshop on Logic Program Synthesis and Trans-formation, 1994.[15] M. Bezem. Strong termination of logic programs. Journal of Logic Programming,15(1&2):79{97, 1993.[16] A. Bossi, M. Bugliesi, M. Gabbrielli, G. Levi, and M. C. Meo. Di�erentiallogic programming. In Proc. Twentieth Annual ACM Symp. on Principles ofProgramming Languages, pages 359{370. ACM Press, 1993.[17] A. Bossi and N. Cocco. Verifying correctness of logic programs. In J. Diazand F. Orejas, editors, TAPSOFT '89, Barcelona, Spain, March 1989, (LectureNotes in Computer Science, vol. 352), pages 96{110. Springer-Verlag, 1989.[18] A. Bossi and N. Cocco. Basic Transformation Operations which preserve Com-puted Answer Substitutions of Logic Programs. Journal of Logic Programming,16(1&2):47{87, 1993.[19] A. Bossi, N. Cocco, and S. Dulli. A method for specializing logic programs.ACM Transactions on Programming Languages and Systems, 12(2):253{302,April 1990.[20] A. Bossi, N. Cocco, and S. Etalle. On Safe Folding. In M. Bruynooghe andM. Wirsing, editors, Programming Language Implementation and Logic Pro-gramming - Proceedings PLILP'92, volume 631 of Lecture Notes in ComputerScience, pages 172{186. Springer-Verlag, 1992.[21] A. Bossi, N. Cocco, and S. Etalle. Transforming Normal Programs by Re-placement. In A. Pettorossi, editor, Meta Programming in Logic - ProceedingsMETA'92, volume 649 of Lecture Notes in Computer Science, pages 265{279.Springer-Verlag, Berlin, 1992.[22] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semanticsfor Logic Programs. Theoretical Computer Science, 122(1-2):3{47, 1994.[23] F. Bronsard, T.K. Lakshman, and U.S. Reddy. A framework of directionality forproving termination of logic programs. In K.R. Apt, editor, Proceedings of theJoint International Conference and Symposium on Logic Programming, pages

Bibliography 199321{335. MIT Press, 1992.[24] M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. Journalof Logic Programming, 19-20:443{502, 1994.[25] R.M. Burstall and J. Darlington. A transformation system for developing re-cursive programs. Journal of the ACM, 24(1):44{67, January 1977.[26] L. Cavedon. Acyclic programs and the completeness of SLDNF-resolution. The-oretical Computer Science, 86:81{92, 1991.[27] R. Chadha and D.A. Plaisted. Correctness of uni�cation without occur check inProlog. Technical report, Department of Computer Science, University of NorthCarolina, Chapel Hill, N.C., 1991.[28] K. L. Clark. Negation as failure rule. In H. Gallaire and G. Minker, editors,Logic and Data Bases, pages 293{322. Plenum Press, 1978.[29] K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC79/59, Imperial College, Dept. of Computing, London, 1979.[30] K.L. Clark and S. Sickel. Predicate logic: a calculus for deriving programs. InProceedings of IJCAI'77, pages 419{120, 1977.[31] H. Coelho and J.C. Cotta. Prolog by Example. Springer-Verlag, Berlin, 1988.[32] J. Cook and J.P. Gallagher. A transformation system for de�nite programs basedon termination analysis. In F. Turini, editor, Proc. Fourth Workshop on LogicProgram Synthesis and Transformation. Springer-Verlag, 1994.[33] D. A. de Waal and J. P Gallagher. Specialization of a uni�cation algorithm.In T. Clement and K.-K. Lau, editors, Proc. First Workshop on Logic ProgramSynthesis and Transformation, pages 205{221. Springer-Verlag, 1991.[34] P. Deransart and J. Maluszynski. Relating Logic Programs and Attribute Gram-mars. Journal of Logic Programming, 2:119{156, 1985.[35] P. Deransart and J. Maluszy�nski. Relating Logic Programs and Attribute Gram-mars. Journal of Logic Programming, 2:119{156, 1985.[36] C. Dwork, P.C. Kanellakis, and J.C. Mitchell. On the sequential nature ofuni�cation. Journal of Logic Programming, 1(1):35{50, 1984.[37] C. Dwork, P. Kannellakis, and L. Stockmeyer. Parallel algorithms for termmatching. In J. H. Siekmann, editor, Proc. Eighth International Conference onAutomated Deduction, Lecture Notes in Computer Science 230, pages 416{430.Springer-Verlag, 1986.[38] S. Etalle. Transformazione dei programmi logici con negazione, Tesi di Laurea,Dip. Matematica Pura e Applicata, Universit�a di Padova, Padova, Italy, July1991.[39] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modelingof the operational behavior of logic languages. Theoretical Computer Science,69(3):289{318, 1989.[40] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-TheoreticReconstruction of the Operational Semantics of Logic Programs. Informationand Computation, 102(1):86{113, 1993.[41] M. Fitting. A Kripke-Kleene semantics for Logic Programs. Journal of LogicProgramming, 2(4):295{312, 1985.

200 Bibliography[42] M. Gabbrielli, G.M. Dore, and G. Levi. Observable Semantics for ConstraintLogic Programs. Journal of Logic and Computation, 5(2):133{171, 1995.[43] M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint LogicPrograms. In K. Furukawa, editor, Proc. Eighth Int'l Conf. on Logic Program-ming, pages 238{ 252. The MIT Press, Cambridge, Mass., 1991.[44] H. Gaifman and E. Shapiro. Fully abstract compositional semantics for logicprograms. In Proc. Sixteenth Annual ACM Symp. on Principles of ProgrammingLanguages, pages 134{142. ACM, 1989.[45] J. Gallagher and M. Bruynooghe. Some low-level source transformations forlogic programs. In M. Bruynooghe, editor, Proceedings of the Second Workshopon Meta-Programming in Logic, April 1990, Leuven, Belgium, pages 229{246.Department of Computer Science, KU Leuven, Belgium, 1990.[46] J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCPprograms using abstract interpretation. New Generation Computing, 6(2,3):159{186, 1988.[47] P.A. Gardner and J.C. Shepherdson. Unfold/fold transformations of logic pro-grams. In J-L Lassez and G. Plotkin, editors, Computational Logic: Essays inHonor of Alan Robinson. MIT Press, 1991.[48] A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and the Well-FoundedSemantics for General Logic Programs. In Proc. Seventh ACM symposium onPrinciples of Database System, pages 211{230, 1988.[49] Nevin Heintze, Spiro Michaylov, and Peter J. Stuckey. CLP(R) and some elec-trical engineering problems. In Jean-Louis Lassez, editor, ICLP'87: Proceedings4th International Conference on Logic Programming, pages 675{703, Melbourne,Victoria, Australia, May 1987. MIT Press. Also in Journal of Automated Reas-oning vol. 9, pages 231{260, October 1992.[50] C.J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372{392,April 1981.[51] J. Ja�ar and J.-L. Lassez. Constraint Logic Programming. In Proc. FourteenthAnnual ACM Symp. on Principles of Programming Languages, pages 111{119.ACM, 1987.[52] J. Ja�ar and J.-L. Lassez. Constraint Logic Programming. Technical report,Department of Computer Science, Monash University, June 1986.[53] Joxan Ja�ar and Michael J. Maher. Constraint logic programming: A survey.Journal of Logic Programming, 19/20:503{581, 1994.[54] Joxan Ja�ar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. An ab-stract machine for CLP(R). In Proceedings ACM SIGPLAN Symposium on Pro-gramming Language Design and Implementation (PLDI), San Francisco, pages128{139, June 1992.[55] Joxan Ja�ar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. TheCLP(R) language and system. TOPLAS: ACM Transactions on ProgrammingLanguages and Systems, 14(3):339{395, July 1992.[56] Niels J�rgensen, Kim Marriott, and Spiro Michaylov. Some global compile-time optimizations for CLP(R). In Vijay Saraswat and Kazunori Ueda, edit-

Bibliography 201ors, ILPS'91: Proceedings of the International Logic Programming Symposium,pages 420{434, San Diego, October 1991. MIT Press.[57] T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in Un-fold/Fold Logic Programming Transformation. In Proc. Int'l Conf. on FifthGeneration Computer Systems, pages 413{422. Institute for New GenerationComputer Technology, Tokyo, 1988.[58] T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in Un-fold/Fold Logic Programming Transformation. Theoretical Computer Science,75(1&2):139{156, 1990.[59] S.C. Kleene. Introduction to Metamathematics. D. van Nostrand, Princeton,New Jersey, 1952.[60] H. Komorowski. Partial evaluation as a means for inferencing data structuresin an applicative language: A theory and implementation in the case of Pro-log. In Ninth ACM Symposium on Principles of Programming Languages, Al-buquerque, New Mexico, pages 255{267. ACM, 1982.[61] K. Kunen. Negation in Logic Programming. Journal of Logic Programming,4:289{308, 1987.[62] A. Lakhotia and L. Sterling. Composing recursive logic programs with clausaljoin. New Generation Computing, 6(2,3):211{225, 1988.[63] C. Lassez, K. McAloon, and R. Yap. Constraint Logic Programming and OptionTrading. IEEE Expert, 2(3), 1987.[64] J.-L. Lassez, M. J. Maher, and K. Marriott. Uni�cation Revisited. In J. Minker,editor, Foundations of Deductive Databases and Logic Programming, pages 587{625. Morgan Kaufmann, Los Altos, Ca., 1988.[65] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.Second edition.[66] J. W. Lloyd and J. C. Shepherdson. Partial Evaluation in Logic Programming.Journal of Logic Programming, 11:217{242, 1991.[67] M.J. Maher. Correctness of a logic program transformation system. IBM Re-search Report RC13496, T.J. Watson Research Center, 1987.[68] M.J. Maher. Equivalences of logic programs. In editor J. Minker, editor, Found-ation of Deductive Databases and Logic Programming, pages 627{658. MorganKaufmann, 1988.[69] M.J. Maher. A transformation system for deductive databases with perfect modelsemantics. Theoretical Computer Science, 110:377{403, 1993.[70] J. Maluszynski and H. J. Komorowski. Uni�cation-free execution of logic pro-grams. In Proceedings of the 1985 IEEE Symposium on Logic Programming,pages 78{86, Boston, 1985. IEEE Computer Society Press.[71] M. Marchiori. Localizations of uni�cation freedom through matching directions.In M. Bruynooghe, editor, Proc. Eleventh International Logic ProgrammingSymposium. MIT Press, 1994.[72] Kim Marriott and Harald S�ndergaard. Analysis of constraint logic programs.In Saumya Debray and Manuel Hermenegildo, editors, NACLP'90: Proceed-ings North American Conference on Logic Programming, pages 531{547, Austin,

202 Bibliography1990. MIT Press.[73] Kim Marriott and Peter J. Stuckey. The 3 r's of optimizing constraint logicprograms: Re�nement, removal and reordering. In POPL'93: Proceedings ACMSIGPLAN Symposium on Principles of Programming Languages, Charleston,January 1993.[74] A. Martelli and U. Montanari. An e�cient uni�cation algorithm. ACM Trans-actions on Programming Languages and Systems, 4:258{282, 1982.[75] C. S. Mellish. The Automatic Generation of Mode Declarations for Prolog Pro-grams. DAI Research Paper 163, Department of Arti�cial Intelligence, Univ. ofEdinburgh, August 1981.[76] R. A. O'Keefe. Towards an Algebra for Constructing Logic Programs. In Proc.IEEE Symp. on Logic Programming, pages 152{160, 1985.[77] A. Pettorossi and M. Proietti. Transformation of logic programs: Foundationsand thechniques. Journal of Logic Programming, 19,20:261{320, 1994.[78] M. Proietti and A. Pettorossi. Unfolding, de�nition, folding, in this order foravoiding unnecessary variables in logic programs. In Maluszynski and M. Wirs-ing, editors, PLILP 91, Passau, Germany (Lecture Notes in Computer Science,Vol.528), pages 347{358. Springer-Verlag, 1991.[79] M. Proietti and A. Pettorossi. Synthesis of programs from unfold/fold proofs.In Y. Deville, editor, Proc. Thirs Workshop on Logic Program Synthesis andTransformation. Springer-Verlag, 1993.[80] M. Proietti and A. Pettorossi. Total correctness of a goal replacement rulebased of the unfold/fold proof method. In M. Alpuente, editor, Proc. 1994 JointConference on Declarative Progrmming GULP-PRODE'94, 1994.[81] T. C. Przymusinki. Perfect model semantics. In Fifth international Conferenceand Symposium on Logic programming, Seattle, U.S.A., pages 1081{1096, 1988.[82] T. Przymusinski. Every logic program has a natural strati�cation and an iteratedleast �xed point model. In Proceedings of the Eighth Symposium on Principlesof Database Systems, pages 11{21. ACM SIGACT-SIGMOD, 1989.[83] U. S. Reddy. Transformation of logic programs into functional programs. InInternational Symposium on Logic Programming, pages 187{198, Silver Spring,MD, February 1984. Atlantic City, IEEE Computer Society.[84] U.S. Reddy. On the relationship between logic and functional languages. InD. DeGroot and G. Lindstrom, editors, Functional and Logic Programming,pages 3{36. Prentice-Hall, 1986.[85] D.A. Rosenblueth. Using program transformation to obtain methods for elimin-ating backtracking in �xed-mode logic programs. Technical Report 7, Univer-sidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Matemat-icas Aplicadas y en Sistemas, 1991.[86] D. Sands. Total correctness by local improvement in program transformation.In Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Symposium onPrinciples of Programming Languages (POPL). ACM Press, January 1995. (ToAppear).[87] T. Sato. An equivalence preserving �rst order unfold/fold transformation system.

Bibliography 203In Second Int. Conference on Algebraic and Logic Programming, Nancy, France,October 1990, (Lecture Notes in Computer Science, Vol. 463), pages 175{188.Springer-Verlag, 1990.[88] T. Sato. Equivalence-preserving �rst-order unfold/fold transformation system.Theoretical Computer Science, 105(1):57{84, 1992.[89] H. Seki. Unfold/fold transformation of strati�ed programs. In G. Levi andM. Martelli, editors, 6th International Conference on Logic Programming, pages554{568. The MIT Press, 1989.[90] H. Seki. A comparative study of the Well-Founded and Stable model semantics:Transformation's viewpoint. In D. Pedreschi W. Marek, A. Nerode and V.S.Subrahmanian, editors, Workshop on Logic Programming and Non-MonotonicLogic, Austin, Texas, October 1990, pages 115{123. Association for Logic Pro-gramming and Mathematical Sciences Institute, Cornell University, 1990.[91] H. Seki. Unfold/fold transformation of strati�ed programs. Theoretical Com-puter Science, 86(1):107{139, 1991.[92] H. Seki. Unfold/fold transformation of general logic programs for the Well-Founded semantics. Journal of Logic Programming, 16(1&2):5{23, 1993.[93] J. C. Shepherdson. Language and equality theory in logic programming. Tech-nical Report PM-88-08, University Walk, Bristol, England, 1988.[94] L. Sterling and E. Y. Shapiro. The Art of Prolog. The MIT Press, Cambridge,Mass., 1986.[95] H. Tamaki and T. Sato. A transformation system for logic programs whichpreserves equivalence. Technical Report ICOT TR-018, ICOT, Tokyo, Japan,August 1983.[96] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. InSten-�Ake T�arnlund, editor, Proc. Second Int'l Conf. on Logic Programming,pages 127{139, 1984.[97] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MITPress, Cambridge, MA, 1989.[98] E. Yardeni, T. Fr�uhwirth, and E. Shapiro. Polymorphically typed logic pro-grams. In F. Pfenning, editor, Types in Logic Programming, pages 63{90. MITPress, Cambridge, Massachussets, 1992.

Samenvatting
Het proefschrift is als volgt opgebouwd. Hoofdstuk 1 bevat een korte introductie ophet gebied van logisch programmeren en programma transformaties. In Hoofdstuk2 wordt de semantiek van normale logische programma's behandeld. Dit hoofdstukdient als introductie voor de daaropvolgende drie hoofdstukken. Daarnaast bevathet hoofdstuk een nieuw resultaat waarin programma equivalentie met betrekkingtot de Kunen semantiek wordt gekarakteriseert. In Hoofdstuk 3 beginnen we met destudie van eigenschappen van Unfold/Fold transformatie systemen. In dit hoofdstukbewijzen we dat de Unfold/Fold methode van Tamaki en Sato, toegepast op een ter-minerend programma, resulteert in een programma dat zelf ook terminerend is. InHoofdstuk 4 introduceren we de vervangingsoperatie, en onderzoeken enkele nieuwetoepassingscondities, in de context van normale logische programma's. De resultatenuit dit hoofdstuk worden in het daaropvolgende hoofdstuk gebruikt om nieuwe toep-assingscondities voor de Fold operatie te vinden, die de correctheid van deze operatiemet betrekking tot de Fitting semantiek garanderen. In Hoofdstuk 5 de�ni�eren weeen transformatiesysteem voor zogenaamde `Modular Constraint Logic Programs';logische programma's met een modulaire opbouw, waarin programmaregels rand-voorwaarden kunnen bevatten. Daarnaast geven we een aantal toepassingsconditiesdie er voor zorgen dat het systeem compositioneel is; we bewijzen dat onder deze con-dities de getransformeerde module dezelfde antwoordformules heeft als het orgineel,ook wanneer deze modules met andere modules samengevoegd worden. In Hoofdstuk6 gaan we dieper in op de problemen die spelen bij het transformeren van `ModularConstraint Logic Programs', met name bij de vervangingsoperatie. In dit hoofd-stuk de�ni�eren we nieuwe toepassingscondities, onder welke tijdens de transformatiebepaalde observeerbare eigenschappen behouden blijven, ook onder compositie vanmodules. Er dient opgemerkt te worden dat, binnen onze aanpak, de toepassingscon-dities niet gebonden zijn aan speci�eke observeerbare eigenschappen. Het is vaakmogelijk deze condities zodanig aan te passen, dat ze voldoen voor de observeerbareeigenschappen waar we het meest in zijn ge��nteresseerd. In Hoofdstuk 7 laten weprogramma transformaties voor wat ze zijn, en houden we ons bezig met programmaanalyse. Het is algemeen bekend dat uni�catie het hart is van de resolutie methode205

206 Samenvattingdie in PROLOG gebruikt wordt, en dat de e�ci�entie waarmee dit gebeurt een groteinvloed heeft op de prestaties van de interpreter. In dit hoofdstuk presenteren weeenvoudige condities onder welke het mogelijk is uni�catie te vervangen door `iteratedmatching', een procedure die een stuk e�ci�enter is te implementeren dan uni�catie.We gebruiken deze condities vervolgens om aan te tonen dat `iterated matching' vol-staat bij een aantal veelgebruikte PROLOG programma's. Met deze kennis is hetmogelijk de executie van deze programma's te versnellen.

Titles in the ILLC Dissertation Series:Transsentential Meditations; Ups and downs in dynamic semanticsPaul DekkerILLC Dissertation series 1993-193.1.ned.tex93.1.eng.tex90-74795-20-x00: SOLD OUT Resource Bounded ReductionsHarry BuhrmanILLC Dissertation series 1993-293.2.ned.tex93.2.eng.tex90-74795-16-120,00 E�cient MetamathematicsRineke VerbruggeILLC Dissertation series 1993-393.3.ned.tex93.3.eng.tex90-800769-8-820,00 Extending Modal LogicMaarten de RijkeILLC Dissertation series 1993-493.4.ned.tex93.4.eng.tex90-800769-9-622,50 Studied FlexibilityHerman HendriksILLC Dissertation series 1993-593.5.ned.tex93.5.eng.tex90-74795-01-325,00 Aspects of Algorithms and ComplexityJohn TrompILLC Dissertation series 1993-693.6.ned.tex93.6.eng.tex90-74795-17-x20,00 The Noble Art of Linear DecoratingHarold SchellinxILLC Dissertation series 1994-194.1.ned.tex94.1.eng.tex90-74795-02-122,50 Generating Uniform User-Interfaces forInteractive Programming EnvironmentsJan Willem Cornelis KoornILLC Dissertation series 1994-294.2.ned.tex94.2.eng.tex90-74795-03-x20,00 Process Theory and Equation SolvingNicoline Johanna DrostILLC Dissertation series 1994-394.3.ned.tex94.3.eng.tex90-74795-04-820,00 Calculi for Constructive Communication,a Study of the Dynamics of Partial StatesJan JasparsILLC Dissertation series 1994-494.4.ned.tex94.4.eng.tex90-74795-08-020,00 Executable Language De�nitions, CaseStudies and Origin Tracking TechniquesArie van DeursenILLC Dissertation series 1994-5

208 Samenvatting94.5.ned.tex90-74795-09-922,50 Chapters on Bounded Arithmetic & on ProvabilityLogicDomenico ZambellaILLC Dissertation series 1994-694.6.ned.tex94.6.eng.tex90-74795-10-215,00 Adventures in Diagonalizable AlgebrasV. Yu. ShavrukovILLC Dissertation series 1994-794.7.ned.tex94.7.eng.tex90-74795-18-817,50 Learnable Classes of Categorial Gram-marsMakoto KanazawaILLC Dissertation series 1994-894.8.ned.tex94.8.eng.tex90-74795-19-622,50 Clocks, Trees and Stars in Process The-oryWan FokkinkILLC Dissertation series 1994-994.9.eng.tex90-74795-11-017,50 Logics for Agents with Bounded RationalityZhisheng HuangILLC Dissertation series 1994-1094.10.eng.tex90-74795-13-720,00 On Modular Algebraic Prototol Speci�cationJacob BrunekreefILLC Dissertation series 1995-190-74795-12-9(to appear) Investigating Bounded ContractionAndreja PrijateljILLC Dissertation series 1995-290-74795-14-515,00 Algebraic Relativization and Arrow LogicMaarten MarxILLC Dissertation series 1995-390-74795-15-317,50 Study on the Formal Semantics of PicturesDejuan WangILLC Dissertation series 1995-4(to appear) Generation of Program Analysis ToolsFrank TipILLC Dissertation series 1995-590-74795-22-620,00 Veri�cation Techniques for Elementary Data Types and Retrans-mission ProtocolsJos van WamelILLC Dissertation series 1995-6

Samenvatting 209Transformation and Analysis of (Constraint) Logic ProgramsSandro EtalleILLC Dissertation series 1995-790-74795-27-7 Frames and Labels. A Modal Analysis of Categorial InferenceNatasha KurtoninaILLC Dissertation series 1995-890-74795-28-5 Tools for PSFG.J. VeltinkILLC Dissertation series 1995-990-74795-29-3 (to be announced)Giovanna CeparelloILLC Dissertation series 1995-1090-74795-30-7 Instantial Logic. An Investigation into Reasoning with InstancesW.P.M. Meyer ViolILLC Dissertation series 1995-1190-74795-31-5

