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Chapter 1

Program’s transformation

It is well-known that a good program has to be both correct (wrt a given specification)
and efficient. A better program is also inexpensive. These three aspects are often in
contrast with each other. On one hand, it is often the case that efficient programs
(and algorithms) are so complicated that they’re difficult to prove correct. On the
other hand, the ones which are easy to prove correct are those that are simple and
clear, which are often outperformed by more complex ones. Finally, because of the
increase in program’s size that the modern architectures allow (and require), and the
decrease in the hardware’s cost, the impact that cost of software has in the overall
(software—l—hardware) expenses is more and more increasing. Of course the more
complicated a program the more likely it is to be expensive.

Source-to-source program’s transformation provide a methodology for deriving
correct and possibly efficient and inexpensive programs starting from a specification.
The underlying idea is to separate the problem of correctness from the issue of ef-
ficiency. To this end, the process of developing a (large) application is divided into
two phases. First the programmer writes an initial program which may be simple
and inefficient, but whose correctness is easily checkable. Secondly, this program
is transformed into a more performing one. This latter is actually an optimization
phase. This may take several steps, may return a program which is written in the
same language of the original one and has to fulfill the following three important
requirements:

First, Tt must be effective. In principle the optimization phase has to make up for
the efficiency we have lost by writing a program which is (inexpensive and) easy to
prove correct. In the logic programming area several strategies have been devised in
order to achieve such an optimization. Among them we should mention program’s
specialization and partial evaluation [60]. The techniques program’s specialization
allow to obtain a more efficient program by exploiting the fact that the program itself
will always be employed in a certain context, that is, together with an input that
satisfies certain preconditions. In the Logic programming area, these techniques have
been studied by Bossi et al. [19] and by Gallagher et al. [46, 45, 33]. An important

special case of program’s specialization is the technique of partial evaluation (also



4 Chapter 1. Program’s transformation

referred to as partial deduction). This methodology can be applied when a part of
the input is known in advance (say, at compile-time), and can be regarded as an
application of Kleene’s s-m-n Theorem.

Secondly, the optimization phase must be at least semi-automatizable. Indeed,
the task of transforming a program must be much more affordable than the one of
writing one from scratch, and therefore it cannot be done “by hand”.. To achieve
this, the optimization phase is usually broken into several steps, in each step a basic
transformation operation is applied. In the field of Logic programming, the most
prominent basic operations are unfolding, folding and replacement which are the op-
erations studied in this thesis. The applicability of each transformation step is usually
automatically checkable; however, in order to achieve effectiveness, the sequence of
steps to follow is determined by a strategy which may need human supervision.

It must be correct. This is the issue we’ll mostly address in this thesis. Technic-
ally, we say that a transformation is observationally correct if the resulting program
has the same behavior of the initial one, i.e. if the two programs are observationally
equivalent. In this way, assuming that the initial program is correct, the problem of
the correctness of the resulting program is reduced to the problem of the correctness
of the transformation sequence, and, ultimately, to the problem of the correctness of
each basic transformation operation. Being available a formal definition of semantics
of, we say that the transformation is correct if the semantics of the resulting program
is equal to the semantics of the initial one. Indeed, one reason why program’s trans-
formation (at the source-code level) are so popular in field such as logic and functional
programming is that in these areas there exists elegant and mathematical methodo-
logies for determining the semantics of a program. These declarative semantics have
been (often) proven equivalent to the operational ones, and, being defined in math-
ematical terms, are much more suitable to be used for verifying a transformation’s
correctness.

In this thesis we’ll focus on source-to-source program’s transformation, specifically
in the field of logic programming. Therefore, when we talk of transformation we’ll
actually refer to this more restrictive kind. Other forms of program’s transformation
which we won’t cover here are the compilation of a program into machine code and
the synthesis of programs from a given specification language. However, for this
latter case, it should be mentioned that the techniques and the basic operations used
for program’s synthesis are often the same used and addressed in this thesis .

Unfold /Fold Transformations

Program’s transformation techniques began to be studied in the early 70’s. However,
the first well-known formalization appeared in 1977, with the work of Burstall and
Darlington [25]. [25] introduced for the first time the operations of unfolding and
folding, which allowed the development of recursive programs. Since then a large
body of literature has been produced on the subject. The transformation system was
then adapted to logic programs both for program synthesis [30, 50], and for program
specialization and optimization [60]. Soon later, Tamaki and Sato [96] proposed an
elegant framework for the transformation of logic programs based on unfold/fold



rules. Tamaki-Sato’s system also included a replacement operation, which is a topic
we'll address in the sequel. The operation of unfolding, consists in applying in all
possible ways a resolution step to an atom in the body of a clause. Unfolding is
the fundamental operation for partial evaluation [66] and is usually applied only to
positive literals (an exception is [11]). Being such a “natural” operation, unfolding is
correct wrt practically all the semantics available for logic programs.

Folding, can be regarded as the inverse of unfolding, as long as one single unfolding
is possible. The main feature of this operation is that it can introduce recursion in
the body of a clause, therefore allowing optimizations which are certainly non-trivial.
On the other hand, if applied indiscriminately, this operation may well introduce
infinite loops in the program, and therefore its applicability has to be restricted by
suitable applicability conditions. Tamaki and Sato provided conditions which ensure
the preservation of the least Herbrand model semantics (as proven in [96] itself) and of
the computed answer substitution semantics (as proven by Kawamura and Kanamori
in [58]). However, Seki showed that the system does not preserve the finite failure set
of the initial program, this problem is particularly relevant when we transform normal
logic programs, that is, programs which use the negation operator in the bodies of the
clauses. In [91], Seki provides new, more restrictive applicability conditions which
guarantee that the system preserves also the finite failure set and the perfect model
semantics of stratified programs. Since then serious research effort has heen devoted
to proving correctness for the unfold /fold system w.r.t. the various semantics available
for normal programs. Just to cite the most relevant works, we should mention Sato’s
[88] (in which he adapts the technique to full first-order programs), Maher’s [67, 69],
and the works of Gardner and Shepherdson [47], Aravidan and Dung [12], Seki [92],

Bossi and Cocco [18] and Bensaou and Guessarian [14].

The replacement operation

Replacement is possibly the most general transformation operation for logic programs.
Syntactically, it consist in substituting a conjunction of literals C' with another con-
junction D in the body of a clause. Clearly, for the syntactic point of view, this
operation is able to imitate most of the other transformation operation. For instance,
it can imitate the folding operation, and it can introduce recursion in the bodies of the
clauses. On the other hand, being so general, if we want it to be also somehow correct,
we have to restrict its use by suitable applicability conditions. These applicability
conditions may vary according to the semantic properties that we are interested in
preserving along the transformation. In the field of logic programs, the replacement
operation has been studied for the first time in the context of definite programs by
Tamaki and Sato in [96]. Later, developments were provided by the works of Sato
himself [88], Gardner and Shepherdson [47], Bossi, Cocco and Etalle [20], Proietti
and Pettorossi [79, 80] Maher [67, 69] Cook and Gallagher [32] and Bensaou and
Guessarian [14]. For the technical details of each of these approach we refer to In
section 7.5.

The applicability conditions for the replacement operations are usually undecid-
able. Indeed this operation is to be regarded as a more abstract operation than,
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for instance, unfolding and folding. We could say that while unfolding and folding
are syntactic-driven operation, replacement in semantics-driven. The interest in the
study of the applicability conditions of replacement is due to the fact that (a) it is
an extremely powerful operation, and allows optimizations which have been proven
impossible with unfold-fold transformations, and (b) it can be regarded as the oper-
ation that lies behind the folding one: i.e. as we'll show in this thesis folding can be
often seen as a particular case of replacement in which the applicability conditions
are syntactically checkable.

A basic applicability condition for the replacement operation, which is common
to all the approaches mentioned above, is that the replacing conjunction has to be
semantically equivalent to the replaced one. Unfortunately, this requirement alone is
not sufficient to guarantee the correctness of the operation. The main problem is that
the operation may still introduce an infinite loop, in which case the final program is
likely not to have the same expressiveness of the initial one. The approaches in the
literature differ a lot in the method for avoiding the introduction of a loop. In this
thesis, in chapters 4 and 7 we’ll propose new applicability conditions for it.

S o o o o o o o o ok K o o KK KK S o KK R o K K

The system was then extended by Seki [91] to logic programs with negation, in
particular he provided new, more restrictive applicability conditions which guarantee
that the system preserves also the finite failure set and the perfect model semantics of
stratified programs. Since then serious research effort has been devoted to proving its
correctness w.r.t. the various semantics available for normal programs. For instance,
the new system was then adapted by Sato to full first order programs [88]. Related
work has been done by Maher [69], Gardner and Shepherdson [47], Aravidan and
Dung [12], Seki [92], Bossi and Cocco [18] and Bensaou and Guessarian [14].

The replacement operation

Replacement is possibly the most general transformation operation for logic programs.
Syntactically, it consist in substituting a conjunction of literals C' with another con-
junction D in the body of a clause. Clearly, for the syntactic point of view, this
operation is able to imitate most of the other transformation operation. To start
with, it can imitate the folding operation. On the other hand, being so general, if we
want it to be also somehow correct, we have to restrict its use by suitable applicability
conditions. These applicability conditions may vary according to the semantic proper-
ties that we are interested in preserving along the transformation. In the field of logic
programs, the replacement operation has been studied for the first time in the context
of definite programs by Tamaki and Sato in [96]. Later, developments were provided
by the works of Sato himself [88], Gardner and Shepherdson [47], Bossi, Cocco and
Ftalle [20], Proietti and Pettorossi [79, 80] Maher [67, 69] Cook and Gallagher [32]
and Bensaou and Guessarian [14]. For the technical details of each of these approach
we refer to In section 7.5.

SRR IR H AR RASARHSAHRRIAAHS 0] affer that it has been rather neg-
lected by people working on program transformations apart from Sato himself [88],
Maher [67] and Gardner and Shepherdson [47]. Replacement consists in substituting



a conjunction of literals, in the body of a clause, with another conjunction. It is a
very general transformation able to mimic many other operations, such as thinning,
fattening [18] and folding.

Some applicability conditions are necessary in order to ensure the preservation of
the semantics through the transformation. Such conditions depend on the semantics
we associate to the program. In the literature we find different proposal. In [96]
definite programs are considered; the applicability condition requires the replaced
atom (' and the replacing atom D to be logically equivalent in P and that the size
of the smallest proof tree for (' is greater or equal to the size of the smallest proof
tree for 1. Gardner and Shepherdson, in [47], give different conditions for preserving
procedural (SLDNF) semantics and the declarative one. Such conditions are based
on Clark’s (two valued) completion of the program. Also Maher, in [67, 69], stud-
ies replacement wrt Success set, Finite Failure Set, Ground Finite Failure Set and
Perfect Model semantics. Sato, in [88], considers also replacement of formulas whose
equivalence can be proved in first order logic and does not depend on the program.
Bossi et al. have studied the correctness of this operation wrt the S-semantics for
definite programs [20], and the Well-Founded semantics for normal programs [38].

Origin of the chapters

Chapter 2 and 4 will appear in A. Bossi, N. Cocco, and S. Etalle. Simultaneous
replacement in normal programs. Journal of Logic and Computation, 1995. A pre-
liminary version appeared in Transforming Normal Programs by Replacement. In
A. Pettorossi, editor, Meta Programming in Logic - Proceedings META 92, volume
649 of Lecture Notes in Computer Science, pages 265 279. Springer-Verlag, Berlin,
1992. Chapter 3 appears in A. Bossi and S. Etalle. Transforming Acyclic Programs.
ACM Transactions on Programming lLanguages and Systems, Vol 16, n. 4, July
1994, pages 1081-1096. Chapter 5 appears in A. Bossi and S. Ftalle. More on Un-
fold/Fold Transformations of Normal Programs: Preservation of Fitting’s Semantics.
In F. Turini, editor, Proc. Fourth International Workshop on Meta Programming in
Logic. Springer-Verlag, Berlin, 1994. An extended abstract of chapter 6 appears in
S. Etalle and M. Gabbrielli. Modular Transformations of CLLP Programs. In [.. Ster-
ling, editor, Proc. Twelfth Int’l Conf. on Logic Programming, 1995. An extended
abstract of chapter 7 appears in S. Etalle and M. Gabbrielli. The Replacement Op-
eration for CILP Modules. In N. Jones, editor, Proc. ACM SIGPLAN Symposium on
Partial Fvaluation and Semantics-Based Program Manipulation (PEPM °95), 1995.
Chapter 8 appears in S. Etalle. More (on) Unification-Free Prolog Programs. CWI
Technical Report CS-R9454, September 1994, Amsterdam.






Chapter 2
The semantics of normal logic programs

In this chapter, we define the notation and we give the definitions of the basic declarat-
ive semantics for normal programs, that is, programs which may employ the negation
operations in the bodies of the clauses. In particular we’ll introduce Kunen’s, and
Fitting’s semantics. We'll also provide a new result, which characterizes program’s
equivalence wrt Kunen’s semantics.

2.1 Preliminaries

We assume that the reader is familiar with the basic concepts of logic programming;
throughout the chapter we use the standard terminology of [65] and [3]. We consider
normal programs, that is finite collections of normal rules, A+ Ly,..., L,,. where
Ais an atom and Lq,..., [, are literals. Symbols with a ~ on top denote tuples of
objects, for instance & denotes a tuple of variables xy,...,x,, and ¥ = g stands for
=y Ao Ax, = y,. We also adopt the usual logic programming notation that

uses “.” instead of A, hence a conjunction of literals I,y A ... A L, will be denoted by

la,.... L, orby L.

In this chapter (and every time we’ll deal with normal programs) we’ll always
work with three valued logic: the truth values are then true, false and undefined.
We adopt the truth tables of [59], which can be summarized as follows: the usual
logical connectives have value true (or false) when they have that value in ordinary
two valued logic for all possible replacements of undefined by true or false, otherwise
they have the value undefined.

Three valued logic allows us to define connectives that do not exist in two valued
logic. In particular in the sequel we use the symbol < corresponding to lukasiewicz’s
operator of "having the same truth value”: a < b is true if @ and b are both true,
both false or both undefined; in any other case a < b is false. As opposed to it, the
usual < is undefined when one of its arguments is undefined.

In some cases we restrict our attention to formulas which we consider “well-
behaving” in the three valued semantics. Next definition is intended for characterizing
such formulas.
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Definition 2.1.1

o A logic connective & is allowed iff the following property holds: when a<b is
true or false then its truth value does not change if the interpretation of one of
its argument is changed from undefined to true or false.

e A first order formula is allowed iff it contains only allowed connectives. O

Note that any formula containing the connective < is not allowed, while formulas
built with the usual logic connectives are allowed.

Allowed formulas can be seen as monotonic functions over the lattice on the set
{undefined, true, false} which has undefined as bottom element and true and false are
not comparable.

Completion for Normal Programs

In this chapter we consider as semantics for a normal logic program P the set of all
logical consequences of its completion Comp(P), [28]; the problem of the consistency
of Comp(P) is here avoided by using three valued logic instead of the classical two
valued.

The usual Clark’s completion definition is extended to three valued logic by re-
placing <, in the completed definitions of the predicates, with <. This saves
Comp( P) from the inconsistencies that it can have in two valued logic. For example
the program P = {p < —p.} has Comp(P) = {p < —p} which has a model with p
undefined.

Definition 2.1.2 Tet P be a program and p(f) < By,...,p(1,) < B, be all the
clauses which define predicate symbol p in P. The completed definition of p is

o p(¥) & Vo, 3y, (= 1) A Bs.

where i are new variables and §, are the variables in p(1;) < B,. Tf P contains no
clause defining p, then the completed definition of p is

o p(¥) & false. M

The completed definition of a predicate is a first order formula that contains the

7 correctly, we also need an equality

equality symbol; hence, in order to interpret “=
theory. First recall that a language L is determined by a set of function and predicate

symbols of fixed arities. Constants are treated as 0-ary function symbols.

Definition 2.1.3 CET, Clark’s Equality Theory for the language L, consists of the

axioms:

o f(ar,...,2,) # g(yry...,ym) forall distinet f, g in L;
o f(rrmn) = o) = (1= ) A A — o) for all £ in £
o = #i(x) forall terms ¢(2) distinet from 2 in which 2 occurs;

together with the usual equality axioms, that are needed in order to interpret

correctly “=" | which are reflexivity, symmetry, transitivity, and (¥ =¢) — (f(#) =

f(g)) for all functions and predicate symbols [ in L. 0
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ote that “=" is always interpreted as two valued, since an expression of the form
Note that “=” lways interpreted as t lued, p f the f

I = s, with 1, s ground terms cannot be undefined.

1 , with t, dt t b defined

Definition 2.1.4 The Clark’s completion of P wrt the language £, Compg(P) con-
sists in the conjunction of the completed definition of all the predicates in P together

with CET . O

The Language Problem

The semantics determined by Comp(P) depends on the underlying language £, and
when L is finite (that is, when it contains only a finite number of functions symbols)
the equality theory which is incorporated in Comp( P) is not complete. This problem
can be solved by adding to C'omp(P) some domain closure axioms which are intended
to restrict the interpretation of the quantification to L-terms. The situation is further
complicated by the fact that in the literature we find two different kind of such axioms:
the strong (DCA) and the weak (WDCA) ones. In total there exist three different
“main” approaches, namely we may:

a) Consider an infinite language, with no domain closure axioms. This is the
approach followed by Kunen [61].

b) Consider a finite language and adopt the weak domain closure axioms (WDCA).
This has been studied by Shepherdson [93], and the results are similar to the ones
found for the case of an infinite language (case (a) above).

¢) Consider a finite language and adopt the strong domain closure axioms (DCA).
This was studied by Fitting in the case that £ coincides with the language of the
program L( P); this semantics is commonly known as Fitting’s Model semantics. His
results can also be applied in the case in which £ is larger than L(P).

In this chapter we consider the three cases separately: first we analyze the case
in which the language is infinite, then in Section 4.3 we discuss how the results have
to be modified when we drop the infiniteness assumption.

Fitting’s operator

Fitting’s operator can be considered the three-valued counterpart of the usual (two-
valued) immediate consequence operator Tp, and it is extremely useful for character-
izing the semantics we are going to refer to in the sequel. We begin with the following
Definition.

Definition 2.1.5 Let £ be a language. A three valued (or partial) L-interpretation,
I, is a mapping from the ground atoms of £ into the set {true, false, undefined}. O

A partial interpretation [ is represented by an ordered couple, (T, F), of dis-
joint sets of ground atoms. The atoms in T' (resp. F') are considered to be frue
(resp. false) in I. T is the positive part of I and is denoted by It; equivalently
I is denoted by 7. Atoms which do not appear in either set are considered to
be undefined. Tf I and .J are two partial L-interpretations, then 1N .J is the three
valued L-interpretation given by (ITNJ*. 7~ N.J~), TU.J is the three valued L-

interpretation given by (It U J* I~ U.J ) and we say that I C Jiff I = I N.J, that
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is iff 7T C J* and I~ C .J . The underlying universe of an L-interpretation is the
universe of L-terms, consequently when we say that a first order formula ¢ is true in
I, I &= ¢, we mean that the quantifiers of ¢ are ranging over the Herbrand Universe
of L.

We now give a definition of Fitting’s operator [41]. In the sequel of the chapter
we write Jy B as a shorthand for (Fy B)f, that is, unless explicitly stated, the
quantification applies always before the substitution. We denote by Var(F) the set
of all the variables in an expression I and by L(P) the (finite) language consisting
of the functions and predicate symbols actually occurring in the program P.

Definition 2.1.6 Let P be a normal program, £ a language that contains £(P), and
I a three valued L-interpretation. ®p(1) is the three valued L-interpretation defined
as follows:

o A ground atom A is true in ®p(7), (A € ®p()T)
iff there exists a clause ¢ : B+« L. in P whose head unifies with A, § =
mgu(A, B), and 34 1O is truein T
where 10 is the set of local variables of ¢, @ = Var(L)\Var(B).

o A ground atom A is false in ®p(I), (A € dp()7)
iff for all clauses ¢ : B < Lin P for which there exists § = mgu(A, B) we have
that 3w 1.6 is false in T

where 1 is the set of local variables of ¢, i = Var(L)\Var(B). O

Note that ®p depends on the language L. It would actually be more appropriate
to write ®% instead of ®p, but then the notation would become more cumbersome.
We adopt the standard notation:

o OP(1)=1;

Tar+41 e .
o 0 (1) = op@f (1)
o OT(1) = Usea®B (1), when a is a limit ordinal.

When the argument is omitted, we assume it to be the empty interpretation (0, 0):
o3 =01 (0,0).

b p is a monotonic operator, that is 1 C .J implies ®p(1) C ®p(.J); it follows that
the Kleene’s sequence Q')LO’ @g, e q')y“7 e q');w, ... 1s monotonically increasing and
it converges to the least fixpoint of ®p. Hence there always exists an ordinal o such
that Ifp(®p) = q')gy. Since ®p is monotone but not continuous, a could be greater
than w.

The ®p operator characterizes the three valued model semantics of Compg(P),
in fact Fitting in [41] shows that the three-valued Herbrand models of Comp.(P)
are exactly the fixpoints of ®p; it follows that any program has a least (wrt. C)
three-valued Herbrand model, which coincides with the least fixed point of ®p. This
model is usually referred to as Fitting’s model.

Example 2.1.7 let P be the following program:
P={ n(0).
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And let £ = L(P). We have that

o =(0,0).
oL = ({n(0)},0).
®n = ({n(0),n(s(0))},0)

ifp(dp) = &L =({n

2.2 Kunen’s semantics

In this Section we will always refer to a fixed but unspecified infinite language L,
that we assume contains all the function symbols of the programs we are considering.
Here by infinite language, we mean a language that contains infinitely many functions
symbols (including those of arity 0). Later, in Section 2.3, we discuss the problems
that arise when the language is finite and we show how the results we give here have
to be modified in order to be applied in this other context.

Three valued program’s completion semantics in the case of an infinite language
has been studied by Kunen [61] and successively by Shepherdson [93]. For this reason,
following the literature, we refer to it as Kunen’s semantics. The main result is the
following.

Theorem 2.2.1 ([61]) Let P be a normal program and ¢ an allowed formula.
o Compe(P) |E ¢ iff for some integer n, q');n E ¢

Proof. This is basically Theorem 6.3 in [61], however, in [61] it is assumed that
the language contains a countably infinite number of symbols of each arity. Later,
Shepherdson noticed that the result holds for any infinite language [93, Theorem 5b].
O

The aim of this Section is to define and characterize program’s equivalence, this
will provide the theoretical background for the analysis of the correctness of the trans-
formation. The result we prove here is partially a strengthening of [88, Proposition
3.4] (however, in [88] the more general setting of first order programs under any bhase
theory is considered). We start with the following basic definition.

Definition 2.2.2 We say that P and P’ are equivalent (wrt Kunen’s semantics) iff
for each allowed formula ¢

o Comps(P)E=o¢ it Comps(P') | ¢. =

Equivalence of two programs can be inferred by comparing the Kleene’s sequences
of the ®p operator. The following result has also been proved by Sato in [88] for the
more general setting of first order programs under any base theory.
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Theorem 2.2.3 let P; and P, be two normal programs.
If
Yn dm d)g:' - (T)g:
then for all ¢,
Compe(Pr) E ¢ implies Compe(Py) | @

where ¢ ranges over the set of allowed formulas and n and m are quantified over
natural numbers.

Proof. l.et us assume Vn dm d)g:' C @;?’7 and let ¢ be any allowed formula such that
Compe(Pr) | ¢. By Theorem 2.2.1, there exists an integer n such that d)g:' E ¢;

by the hypothesis there exists an m such that d)g:' C @;?’7 hence (T)g: E .
Again, by Theorem 2.2.1, this implies that Comp.(P2) = ¢. 0

Interestingly, also the inverse implication holds. The following is the main original
result of this chapter. Since the proof is quite long, it is deferred to the Appendix.

Theorem 2.2.4 let P; and P, be two normal programs.
If for all ¢,
Compe(Pr) E ¢ implies Compe(Py) | @

then
¥Vn dm d)g:' C qﬁ;:

where ¢ ranges over the set of allowed formulas and n and m are quantified over
natural numbers.

These results allow us to characterize program’s equivalence: Following Sato
[88], we say that two programs P;, Py are chain equivalent iff ¥n dm d)g:' C

q');m and q');m D) q');n. Using this notation, from the previous Theorems, we
2 1 2
immediately have the following.

Corollary 2.2.5 lLet Py and P, be normal programs, then

e P, and P, are equivalent iff they are chain equivalent. O

Notice that, given two programs Py, P,, the fact that (T);‘:’ = q')g;j is necessary but
not sufficient to ensure that P; is equivalent to P,. This is due to the fact that the
set of ground atomic logical consequences of Comp(P) (which coincide with q');w) is
not sufficient to fully characterize Kunen’s semantics of a program P. Consider for
instance the following two programs ([61]): P = {void(s(X)) < void(X).} and P, =
{void(X') + f.} where the predicate [ has no clause defining it in either programs,
and consequently it is always false. For any term ¢, the predicate void(t) is false
before q')gf, and indeed we have that (T);‘:’ = d);‘; however P; is not equivalent to Py,
in fact we have that Compe(Py) |V X —vord(X') while Compe(Pr) YV X —void( X).
This is reflected by the fact that q’ﬁé E VX —woid( X) while there is no integer n

such that d)g:' E VX —wvoid(X). Indeed, P; has a model which contains, besides the
(representation of ) natural numbers, also an infinite chain of terms #; such that for
each 1, void(t;) is true.
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2.3 Adopting a (possibly) finite language

Our aim now is to analyze how the results given in the previous two Sections have to
be modified when the language adopted is no longer infinite (or at least not necessarily
infinite). Therefore in the sequel we still refer to a fixed but unspecified language
L, but we no longer assume it to be infinite. As we mentioned in section 2.1 the
main problem we have to face when adopting a finite language is that CET; becomes
an incomplete theory. The consequences of this are best shown by the following
Example, which is borrowed from [93]. T.et P be the program:

P={ pe-qX).
q(a). }
The completed definition of P is
p < IX —¢g(X) AN ¢ X) & X =a.

That is, Compe(P) Ep & 3X X #a. If L ={a} then neither p nor —p is a logical
consequence of Comps(P). The problem here is that neither we have a “witness”
that allows us to say that 3X X = a holds, nor we can formally infer that such
a witness does not exists. The two main approaches used in logic programming in
order to obtain a complete theory out of CET, are the following:

e adopting an infinite language (that is a language with infinitely many functions
symbols, and that consequently contains infinitely many “witnesses”);

e adopting a finite language together with some domain closure axioms, which
are axioms that commit us to a specific universe.

For a extended discussion of the subject, we refer to [93].

As we mentioned before, in the literature we find two different kind of domain
closure axioms.

Definition 2.3.1 lLet £ be a finite language.
o The Domain Closure Aziom, DCA,, is

where t1,1,, ... is the sequence of all the ground L-terms.

o The Weak Domain Closure Aziom, WDCA, is

Jy (v = filg)) V...V 3G, (v = [(9,)

where fi,..., f. are all the function symbols in £ and g, are tuples of variables
of the appropriate arity. 0

Note that when L contains a function of arity greater than zero, DCA; is an infinite
disjunction and hence it is not a first-order formula. For this reason. the notation
Compe(P)UDCA,, that we are going to use often in the sequel is actually over-
loaded, nevertheless we shall use it for uniformity with the rest of the chapter. As

opposed to DCA;, WDCA, is a first-order formula.
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The following simple example shows how the semantics of a program changes
depending on the kind of closure axioms adopted. Tet P be the same program we
used in Example 2.1.7.

P={ n(0).
n(s(X)) <« n(X).
q « —n(X). }

and let £ = L(P). The completion of P is

n(r) & (x=0)V([E@y (z=sy)Anly) A ¢ Jy-ny)

together with CET . On one hand, when we use DCA; we have
Compe(PYUDCA; EVa n(zx).

In fact assuming DCA £ is equivalent to restrict ourselves to L-Herbrand interpreta-

tions and models, and the formula V2 n(x) is true in the unique Herbrand model of
P. From this it follows that:

Compe(PYUDCA, E —q.
On the other hand, if we use WDCA we have
Compe(PYUWDCA,; £V n(x).

In fact WDCA £ allows a model which contains, besides the natural numbers, also an
infinite chain of terms #; such that for each i, t; = s(#;41). In such a model each n(t;)
can be false. Tt follows that:

Compe(P)YUWDCA, £ —q.

By assuming WDCA £ we obtain a semantics which is stronger than the one adopting
DCA;. In fact DCA; = WDCA,, and hence if Compe(P)UWDCA,; E ¢, then
also Compe(P)UDCA, | ¢.
It is important to observe that when we adopt some domain closure axioms, we
have to modify in the obvious way, the Definitions of programs equivalence (2.2.2).
Let us now give another Example showing how program’s equivalence may be
affected by the choices of the language and of the closure axioms.

Example 2.3.2 Consider the three programs:

P =1 n(0).
n(s(X)) —n(X). }
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Let £ - £(P])

If we assume DCA . |, for all three the programs we have
Compe(PYUDCA, EVan(x), Pe{P, Py, P}

Actually, all the programs are pairwise equivalent wrt this semantics.

If we assume WDCA
Compe(P)UWDCAg =Y 2 n(z),

while for P € {Py, Py}
Compe(P)UWDCA, =Yz n(z), (2.1)

then only Py and Ps are equivalent wrt this semantics.

Finally if we assume that £ strictly contains L(Py), then Ps is the only program for
which (2.1) holds. In this case no program is equivalent to any of the other ones, no
matter which are the axioms we adopt. O

This Example shows that two programs may be equivalent wrt Comps(P) U DCA,
and not equivalent wrt Compg(P) U WDCA . But there are also cases in which the
converse of this statement is true. So even though the semantics obtained by assum-
ing WDCA . is stronger than the one obtained by assuming DCA,, no program’s
equivalence is stronger than the other one.

2.3.1 The semantics given by Comp,(P)UWDCA,

As far as we are concerned the semantics given by Compgs(P) U WDCA, (with £
possibly finite) behaves exactly as Kunen’s semantics. This fact is due to the following
result.

Theorem 2.3.3 ([93]) Let P be a normal program, L a finite language and ¢ an
allowed formula

o Comps(P)UWDCA, = ¢ iff for some integer n, q');n = . 0

Here L is required to be finite uniquely because otherwise WDCA ;- is not a first-order
formula. Notice that Theorem 2.3.3 is identical to Theorem 2.2.1, which was the only
result on the semantics that we used in Section 4.1. Consequently, the results that we
can prove on program’s and formula’s equivalence and on the replacement operation
are identical to the ones given in the previous Section. In particular, Theorems 2.2.3

and 2.2.4 and Corollary 2.2.5 hold also for Comps(P) U WDCA,.
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2.3.2 Fitting’s Model Semantics

We now introduce the semantics given by Compe(P)z UDCA . As opposed to what
happened in the previous Section, there is no point in requiring £ to be a finite lan-
guage. Since DCA, is (usually) already a non first-order axiom, we have to leave the
first-order context anyhow, and there is no reason here in restricting the domain. As
we said before, adopting DCA ; is equivalent to restricting our attention to Herbrand
interpretations and models (on the language £). This particular semantics enjoys
a remarkable property: namely that there always exists a minimal Herbrand model
(wrt C), this model is usually referred to as Fitting’s model.

Definition 2.3.4 et P be a program, Fitting’s model of P, Fit(P), is the least
three valued Herbrand model of C'omp(P). 0

In order to check if an allowed formulais a logical consequence of Compg(P) U DCA,
it is sufficient to check if it is true in Fit(P). Indeed, we have the following.

Theorem 2.3.5 ([41]) Let P be a normal program and ¢ an allowed formula
o Compe(P)UDCA, |E ¢ iff Fit(P) | ¢. O

A remarkable property of Fit(P) is that it coincides with the interpretation given by
the least fixpoint of the operator ®p, Ifp(Pp). Now, from the monotonicity of ®p,
it follows that the Kleene’s sequence {... q')gy, ...} is monotonically increasing and
it converges to its least fixpoint. Hence there always exists an ordinal o such that
Ifp(dp) = q')gy. Since ®p is monotone but not continuous, a could be greater than
w. Summarizing we have that.

Theorem 2.3.6 ([41]) Let P be a normal program, then, for some ordinal «,
o Fit(P)=Ifp(dp) = O} O

2.4 Appendix. Proof of Theorem 2.2.4

We need a L.emma first.

Lemma 2.4.1 T.et P be a normal program and y an allowed formula with free
variables 7. For each integer n, there exist two formulas in the language of equality,
T and F7, with free variables 7 such that, for any tuple t of ground terms,

o T7(i/&)is true in Q');”Niﬂf x (/%) is;
in any other case T(1/%) is false in q');n.
o FI(1/%)is true in O iff y(i/7) is false in ®T.

in any other case F;(f/”?) is false in q');n.

Proof. From Lemma 4.1 in [93] it follows that 77(1/%) is true in O it \(i/7) is,

and that F7(1/3) is true in T iff y(1/7) is false in ®1. From the completeness of
CET/. in the case that the underlying universe is the Herbrand universe, we have that
when T7(1/&) (vesp. F7(i/#)) is not true in &1 it has to be false in ®17 O
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Actually, this result holds for any choice of L. To give the intuitive idea of how
such formulas are built, let us consider the simple case in which x = n(z), and P is
the program

P={ n(0).
We have that
THx)=2=0,

it

Tg(m)zm:()\/m:],

On the other hand,
Fliz)=2#0A-Fy x = s(y),

it

Fia)=(x#0A-Fyr=s(y)VE@yr=s(y)V(y#0A-TFzy=s(2))), ...
We can now prove the result we were aiming at.

Theorem 2.2.4 l.et P, and P, be two normal programs.

If for all ¢,
Compe(Pr) E ¢ implies Compe(Py) | @
then
Yn dm d)g:' - (T)g:

where ¢ ranges over the set of allowed formulas and n and m are quantified over
natural numbers.
Proof.

The proof is by contradiction. Assume that for all ¢, Comp(P1) |E ¢ implies
Compe(P2) | ¢ and that there exists a fixed n such that

for all m, d)g:' 7 q’ﬁ;:_ (2.2)

For each predicate symbol p let T and Fo be the equality formulas described in
Lemma 2.4.1. Hence T;(q;)(f/”?) is true in ®1 iff p(i/F) is, and F;(q;)(f/"i’) is true in
O iff p(i/7) is false in ®1'. Let also

X = Vi (Tha — p(3) A Fgy — —p(2))
where p ranges over the finite set of predicate symbols occurring in P;. From Lemma
2.4.1 it follows that d)g:' E v, and, by Theorem 2.2.1
Compe(Pr) E x.

By hypothesis we have that Comps(P,) | x, and, by Theorem 2.2.1 there exists an
integer r such that

qﬁ;; E v.
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By (2.2) d)g:' 7 q')%, hence there exists a ground atom ¢(7) such that
either d)g:' = q(1) and qﬁ;; b q(t)  or d)g:' = —=q(1) and qﬁ;; b —q(t).

We consider only the first possibility, the other case is perfectly symmetrical. So we
assume that

Oh b g(f)  and O - (i) (2.3)

By the left hand side of 2.3 and the definition of T:('f) in Lemma 2.4.1,

O b= Ty (1/7).
T:(%)(fw/”?) is a formula of the equality language and contains no predicate symbols
other than “="_ so if it is true in d)g:' it must be frue also in q');?, i.e. d);? = T:(q;)(f/"i’)
But d);? = (0,0) C d’);; hence

O = Tr (/7).
Since q');z E v, fromNthe deﬁni:nion of v, it follows that also q');z EVa (T:(%)("Y') — q(7)),
hence qﬁ;; = T:(q;)(f/"i’) — ¢(1); and, from the above statement,

% F all)

which contradicts the right hand side of (2.3). O



Chapter 3

Transforming Acyclic Programs

An Unfold/Fold transformation system is a source-to-source rewriting methodo-
logy devised to improve the efficiency of a program. Any such transformation should
preserve the main properties of the initial program: among them, termination. In
the field of logic programming, the class of acyclic programs plays an important role
in this respect, as it is closely related to the one of terminating programs. The two
classes coincide when negation is not allowed in the bodies of the clauses.

In this chapter it is proven that the Unfold/Fold transformation system defined
by Tamaki and Sato preserves the acyclicity of the initial program. As corollaries,
it follows that when the transformation is applied to an acyclic program, then finite
failure set for definite programs is preserved; in the case of normal programs, all
major declarative and operational semantics are preserved as well. These results
cannot be extended to the class of left terminating programs without modifying the
definition of the transformation.

3.1 Introduction

Motivation

In this chapter we focus on the unfold/fold transformation system proposed by Ta-
maki and Sato [96].

As the large literature shows [96, 58, 90, 91, 92, 12], a lot of research has been
devoted to proving the correctness of the system wrt the various semantics proposed
for logic programs. However the question of the consequences of the transformation
on the (universal) termination of the program has not yet heen tackled.

Recall that a program is called terminating if all its SLDNF derivations starting
in a ground goal are finite.

Here we follow the approach to termination of Apt and Bezem [5]. They investigate
the class of acyclic programs (introduced by Cavedon [26]) and prove that it is closely
related to the one of terminating programs. In fact we have that every acyclic program

21



OCHO

22 Chapter 3. Transforming Acyclic Programs

is terminating [5] and that every definite, terminating program is acyclic [15]; however,
when negation is allowed in the bodies of the clauses, there are programs which are
terminating but not acyclic. This is caused either by the presence of floundering
derivations or by the fact that since nonground negative literals might not be selected,
some infinite branches of the search tree cannot be explored, see [5] for examples.

In this chapter we prove that when the initial program of an unfold/fold trans-
formation sequence is acyclic, then the resulting program is acyclic as well.

This has some obvious consequences on the preservation of termination and some
semantic repercussions. For definite programs, the transformation preserves the Fi-
nite Failure Set. In fact, since acyclic programs are terminating, and since definite
programs cannot flounder, their Finite Failure Set coincides with the complement of
their Success Set. For programs with negation, the transformation preserves all the
major formalisms, namely Fitting’s model, 2 and 3 valued ground logical consequence
of the completion, and, in the non-floundering cases, the operational semantics based
on the SLDNF-resolution: when the program is acyclic they all coincide and thus
they are preserved by the transformation.

Structure of the chapter

Section 3.3 contains the preliminaries on terminating and acyclic programs and on
the Tamaki-Sato’s unfold/fold transformation system. In section 3.4 we prove that
the transformation preserves the acyclicity of the initial program; we also discuss the
case in which the initial program is left terminating. In Section 3.5 we give a brief
summary of the semantic properties of acyclic programs and we show that they are
preserved through the transformation.

3.2 Unfold/Fold Transformation Systems

We now give the formal definitions of the two unfold /fold transformation systems that
we are going to refer to in the rest of the thesis. We start with the method proposed
by Tamaki and Sato [96] for definite programs and then used by Seki [90, 92] for
normal programs. Here we present it as it is in [92]. Later in this section we’ll also
report the more restrictive modified folding operation introduced by Seki [91] which
guarantees the correctness of the operation also wrt the finitefailure set.

We start with the requirements on the initial program. All definitions are given
modulo reordering of the bodies of the clauses, and standardization apart is always
assumed.

Definition 3.2.1 (initial program) We call a normal program P, an initial pro-
gram if the following two conditions are satisfied:

(I1) Fy is divided into two disjoint sets Py = Py U Pog;
(I2) All the predicates which are defined in P,.,, occur neither in P,; nor in the
bodies of the clauses in P,..,. O
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The predicates defined in P,.,, are called new predicates, while those defined in
P14 are the old predicates. For the porpose of this chapter, clauses in P,.,, will also
be referred to as defining clauses.

Example 3.2.2 [92] Let F, be the following program
Po=DBU{ ¢ : path(X,[X]) — node( X).
ey path(X,[X|Xs]) <« arce(X,Y), path(Y, X s).
ez goodlist([]).
ca: goodlist([X|Xs]) <« —bad(X),goodlist(Xs).
cs i goodpath(X, Xs) <« path(X, Xs),goodlist(Xs). }

where predicates node, arc and bad are defined in DB by a set of unit clauses.
Predicate goodpath(X, Xs) can be employed for finding a path Xs starting from
the node X which doesn’t contain “bad” nodes. Tet P,; = {ci,...,c4} U DB and
Prew = {cs}, thus goodpath is the only new predicate. 0O

Unfolding is the fundamental operation for partial evaluation [66] and consists in
applying a resolution step to the considered atom in all possible ways.

Definition 3.2.3 (Unfolding) et c/: A< H, K. be a clause of a normal program
P, where H is an atom. Let {H, < By,..., H, + B,} be the set of clauses of P
whose heads unify with H, by mgu’s {6y,...,0,}.

e Unfolding H in ¢l consists of substituting el with {ci, ... el }, where, for each
7:7 (‘/: = (A — Biv [\7>97
unfold (P, cl, H) o P\{cl} U {cly,... el }. O

Example 3.2.2 (part 2) By unfolding the atom path(X, Xs) in the body of ¢5, we
obtain

ce 1 goodpath(X,[X]) — node( X), goodlist([X]).
cr: goodpath( X, [X|Xs]) <« arce(X,Y),path(Y, Xs), goodlist([X|X s]).

Both clauses can be further unfolded (cg twice), the resulting clauses are

cs 1 goodpath(X,[X]) — node( X)), =bad( X).
co 1 goodpath(X,[X|Xs]) <« arce(X,Y),path(Y, Xs), —bad( X), goodlist( X s).
et P]Z{C17...7C47C87C9}UDB. O

Folding is the inverse of unfolding when one single unfolding is possible. It consists
in substituting an atom A for an equivalent conjunction of literals R in the body of
a clause c¢. This operation is used in all the transformation systems in order to pack
back unfolded clauses and to detect implicit recursive definitions. In the literature
we find different definitions for this operation. This is due to the fact that it does
not always preserve the declarative semantics and thus its use must be restricted
by some applicability conditions. Depending on the approach, such conditions can
be either a constraint on how to sequentialize the operations while transforming the
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program [96, 58], or can be expressed in terms of semantic properties of the program,
independently from its transformation history [18, 67].

In the method proposed by Tamaki and Sato [96], the transformation sequence
and the folding operation are defined in terms of each other.

Definition 3.2.4 (transformation sequence) A transformation sequence is a se-
quence of programs Fy, ..., P,, n > 0, such that each program P, 0 <1 < n, is
obtained from P; by unfolding or folding a clause of P;.

Definition 3.2.5 (folding) let Fy,..., P

, © > 0, be a transformation sequence,

c: A+ K’ J. aclause in Pand d: D+ K. a clause in P,.,. Let X = Var(d) be
the set of all the variables occurring in the clause d, and Y = V(J,T(R")\V(J,r(%\, 7) be
the set of variables in K’ not in A, J. If there exists a substitution 7 whose domain
is the set X, such that the following conditions hold:

(F1) K7 = K"

(F2) 7 renames with variables in ¥ the variables in A not in D;
(F3) dis the only clause in P,.,, whose head is unifiable with Dr;
(F4) one of the following two conditions holds

1. the predicate in A is an old predicate;
2. cis the result of at least one unfolding in the sequence Fy, ..., P;

then folding Dt in ¢ in P; consists of substituting ¢’ for ¢ in P;, where
def

head(d) = A
body(c') def D, J.
fold(P;, D7, ¢) = (P\{e}) U {e'}. O

Example 3.2.2 (part 3) We can now fold the body of ¢g, using ¢5 as folding clause,
the resulting program is P, = DB U {¢y,...,cq,c10}, where ¢q is the following clause:

cr0 : goodpath( X, [X|Xs]) « are(X,Y), =bad( X), goodpath(Y, X s).

Notice that because this operation the definition of goodpath is now recursive. O

The transformation enjoys the following important properties.

Theorem 3.2.6 l.et Fy,..., P, be a transformation sequence.
o If £y is a definite program then

— [96] The least Herbrand models of the initial and final programs coincide.
— [58] The computed answers substitution semantics of the initial and final
programs coincide.

o If Fy is a normal program, then

— 190] The Stable models of the initial and final programs coincide.

— 192] The Well-Founded models of the initial and final programs coincide.

— [89] Under a further mild assumption on the initial program; if the initial
program is stratified then the final program is stratified and their Perfect
models coincide.
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— [12] The semantic kernels of the initial and final program coincide; this
implies also that the Stable model semantics, the preferred extension se-
mantics, the stationary semantics and the stable theory semantics of the
initial and the final programs coincide. O

Modified folding

We have to mention that the above transformation does not preserve the Finite Failure
set of the initial (definite) program. More precisely we have that the Finite Failure
set of the final program is contained in the one of the initial program, but, in general,
not vice-versa. This is shown by the following example.

Example 3.2.7 let F; be the following program:
Po={ a:p < q,h(X).
ca: h(s(X)) «h(X). }
Here we use the following partition: P,.., = {c1}, Pog = {e2}; notice that there is no
definition for predicate ¢, so the queries P U { < ¢q} and P U { + p} will always fail.

Now if we unfold atom A(X') in the body of the first clause, we obtain a renaming of
the clause itself, namely:

Pr=He}U{es: peq,h(Y).}

c3 satisfies condition (F4.2), so it can be folded, using ¢; as folding clause. The
resulting program is:

Py={c}U{cs: p+p.}

Now the query P, U { < p} does not terminate. 0

The problem of the correctness of the operation wrt the Finite Failure Set was
pointed out by Seki, who modified the applicability conditions of the folding operation
as follows.

Definition 3.2.8 (modified folding) [91] The modified folding operation is defined
exactly as in Definition 3.2.5, with the exception of condition (F4.2), which is replaced
by the following

(F4.2) all the atoms in K’ are the result of some previous unfold operation. 0

This Definition first appeared in [89]. Tt is easy to see that when (F4.27) holds,
then (F4.2) holds as well, hence that the modified folding operation enjoys all the
properties that were proven for the folding operation. Seki proved that modified
folding preserves the Finite Failure set of a definite program [89, 91]; later on Sato,

on a work that extends this definition to full first order programs [87], proved the
correctness of the system wrt Kunen’s semantics.

3.3 Termination

The following notion is crucial.
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Definition 3.3.1 A program is called terminating iff all its SLDNF-derivations
starting from a ground goal are finite. O

Hence terminating programs are the ones whose SLDNF-trees starting in a ground

goal are finite. We now present the approach to the issue of termination followed by
Apt and Bezem [5].

Acyclic programs

Acyclic programs form a natural subclass of the locally stratified ones; they were
introduced by Cavedon [26] and have been further studied by Apt and Bezem [5]. To
give their definition, first we need the following notion.

Definition 3.3.2 let P be a program, a level mapping for P is a function | | :
Bp — N from ground atoms to natural numbers. O

For an atom A, | A] denotes the level of A. Following [5], we extend this definition to
ground literals by letting |- A| = |A|.

Definition 3.3.3 let | | be a level mapping.

o A clause is acyclic wrt | | iff for every ground instance A < Ly,..., L, of it,
and for each 1, |A| > |;];

e A program P is acyclic wrt | | iff all its clauses are. P is called acyclic if it is
acyclic wrt some level mapping. O

Following Bezem [15], we introduce the concept of boundedness, which applies also
to nonground atoms.

Definition 3.3.4 let | | be a level mapping. A literal L is called bounded wrt | | if
| | is bounded on the set [I] of ground instances of .. A goal is called bounded wrt
| | iff all its literals are. O

Example 3.3.5 [8] Consider the program member.

P={ member(X, [V|Xs]) <+ member(X,Xs).
member( X, [X]|Xs]). 1

We adopt the standard list notation and define the function | |;, called listsize which
assigns natural numbers to ground terms as follows:
[ty =1 if ¢ is not of the form [z]x4] (this takes also care of the case t =[]).
[ales]le =1+ |l

We can now define the level mapping | | for the member program: |member(t,s)

=

|s];. Tt is easy to see that program member is acyclic wrt | | and that if [ is a list (b
t

—
~—

this we mean [ = [21,...,2,], where the 2;’s need not be ground), then member(t,

d

is a bounded atom.
We can now relate acyclic and terminating programs.

Theorem 3.3.6 [5] Let P be a program and G be a goal. If there exists a level
mapping | | such that P is acyclic wrt | | and G is bounded wrt | | then all SLDNF
derivations of P U {G} are finite. O
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Since ground goals are bounded, this implies the following.
Theorem 3.3.7 [5] If P is an acyclic program then P is terminating. O

In [5] is stated that the converse of Theorem 3.3.7 holds in the case that no SLDNF-
derivation starting in a ground goal contains a goal with a nonground negative literal
in it, and that since that condition is quite constraining, the result itself is too weak
to be formalized. However it is significant at least for the case that we restrict our
attention to definite programs; in fact in [15] we find the following.

Theorem 3.3.8 [15] et P be a definite program, then P is terminating iff P is
acyclic. O

From the procedural point of view, acyclic programs enjoy the following important
property: the two most prominent approaches, namely the SLDNF resolution (see
Lloyd [65] and Apt [3]) and the SLS resolution from Przymusinski [82], coincide when
applied to acyclic programs. For the semantic properties of acyclic programs we refer
to section 3.5.

3.4 Transforming Acyclic Programs

We now show that if the initial program of a transformation sequence is acyclic then
the resulting program is acyclic as well. We do this by showing that there exists a
level mapping with respect to which every program in the transformation sequence
is acyclic.

Notation

Let Py, ..., P, be the transformation sequence we are considering. Since F, is acyclic,
then it is acyclic wrt some level mapping, say || ||, moreover, there in no loss of
generality in assuming that || || does not take value zero on any atom. let nf be the
number of foldings that are going to be performed in the sequence (which we assume
greater than zero), and let mazbody be the maximum number of literals that a body
of a clause of Fy contains, augmented by one. We also suppose that mazbody> 1, as
it is not possible to perform any unfold or fold operations on a program consisting
solely of unit clauses.
We now define a new level mapping | | for F,.

Definition 3.4.1 Let P, be acyclic wrt the level mapping || ||. The level mapping
| | is defined as follows. Let A be a ground atom.

e If Ais an old atom then we let |A| = nf - mazbody .
o If Ais an new atom then we distinguish two subcases:

(a) If A unifies with the head of only one clause of P,..,, N < By,..., B,,
suppose that A = N, since By, ..., B, are old atoms, we have that | | is
already defined on their ground instances, so we set

|A| = INO| = sup{>r_, |Bi0y| | Dom(v)=Var(Bi0,....,B,0)}+ 1.
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(b) (This case is of no relevance for the proof, as, because of condition (F3),
we are interested in computing the level mapping of atoms that unify with
the head of only one clause of P,.,; but we do have to extend | | in a
consistent way). If A unifies with the head of a (non-unit) set of clauses
{Ni =B, By - Ny Bir, ..., By} € Prcw, suppose that
A = N;0;, we define
Al = sup{SZi) [ Biadin]} + 1
where 7 ranges in [1,...,7] and ~ ranges over the ground substitutions

whose domain is Var(B;10;,..., Bi.@)0;) O

Here the sup of an empty set is assumed to be 0. | | is obviously a level mapping,
as it 1s defined and finite on each ground atom.

In order to prove that each of the programs in the transformation sequence is
acyclic wrt | | we need the following simple but technical lemma.

Lemma 3.4.2 For nonzero integers nf,n,ny, ..., ng, if 1 < k <mazbody then

o if n > sup{ni,...,n.}t, then nf - mazbody™ > nf + Z§:1 nf - mazxbody™

Proof.
nf + Z§:1 nf - mazbody < nf +nf - k- maxbody™ ("
Since k <maxbody
<nf 4+ nf - (mazbody — 1) - maxbody* ("}
=nf +nf - 777/0,.7?])0(]}/3“7){”“7}_‘—1 —nf - ma,mbodys“p{n"}
Since mazbody> 0 and n > sup{n,},
< nf - mazbody® + nf — nf - mazbody™ 1"
= nf - mazbody” + nf - (1 — ma,.?:bodys“'p{n]}).
Since all integers are nonzero and maxbody > 1, 1 — mazbody™ ™} < 0. This proves
the Lemma. O

Lemma 3.4.3 For each P, in the transformation sequence the level mapping | | of
Definition 3.4.1 satisfies the following.

(a) for each ground instance of a defining clause H < By, ..., By.,
I > (Bl + .+ | Bl

(b) for any other clause H < By,..., By. in Ground(P;),
|H| > |Bi|+ ...+ |Be| + nf;.

Where for each 72, nf; is the number of folding operations that will be performed
in the sequence from P; to P,.
Proof. The proof proceeds by induction on the index 1.
Base Case: P,.

Let ¢ : H+« By,..., Br. be a clause of Ground(Py). If & = 0 then the result holds
trivially. So we assume k& > 0. We have to distinguish two cases:

If H is a new predicate, then ¢ is an instance of a defining clause, and condition
(a) is then trivially satisfied by the definition of | |.
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If H is an old predicate, then, since || H|| > sup{||B;||} and since 1 < k <mazxbody,
the result follows from Lemma 3.4.2.

Induction Step: Piyq.

For those clauses that P, and P.; have in common, the result follows from the
inductive hypothesis and the fact that nf;.; < nf,. Hence we can focus on those
clauses that were introduced or modified in the last transformation step (from P; to
Piy1). We distinguish upon the operation that has been used for going from P; to

Pt
Unfolding

et
d: H<+ B L ..., L, bethe unfolded clause, and
c: B+ By,..., By. be one of the unfolding ones.
Let also § = mgu( B, B'), then the resulting clause is
HO < B0,.... B0, 140,...,1L,0.

Since nf;11 = nf;, in order to prove the thesis, we have to prove that, for each ~

|HO~| > | B0y + ...+ | BpOvy| +

Dby + ...+

We have to distinguish two cases:
First we suppose that d is a defining clause. Then B is an old predicate and clause
¢ satisfies condition (b), hence
|BO~| > |Bi0~y| + ...+ | Biby| + nf..
On the other hand, clause d satisfies condition (a), hence
|HO~| > |B'0~y| + | 110y + ...+ | Ln0~].
Since B'0~y = B~ this proves (3.1).
Secondly we consider the case in which d is not a defining clause. Hence d satisfies
condition (b), and we have that
|HO~| > | B0~y + | 110y + ...+ | Lpby| + nf..
Since clause ¢ must satisfy either (a) or (b), we also have that
|BO~| > | Bi0~y| + ...+ | Biov|.
Since B0~y = B~y this proves again (3.1).

Folding

Suppose that:

c: H« By,...,B., Li,..., L. is the folded clause of P;,

d: N+ By,..., By is the folding clause of P,.,,.

Hence (By,....B.) = (Bi,...,By)r,and H < N7, Ly,..., ;. is the clause we add
to Pyq.

By (F4), ¢ is not a defining clause, hence its ground instances have to satisfy
condition (b), that is, for each v, [Hv| > |Biy|+ ...+ | Byl + |1y -+ [ Lay| + nfi.
Since (By,..., B.) = (B,..., By)7, this implies that, for each ~,

[Hy| > |Biryl+ .+ [ Bery[ + [Ty .+ [ ey + 0fi,
where 7 is a renaming on the variables in w = Var(By, ..., Bp)\Var(N). Let 2 = wr,
by the assumptions in (F2), Var(H, Ly,...,L,) Nz = (. Hence we can split v into
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two independent orthogonal substitutions: v = vz7)z, where 7z is v restricted to 2,
and ~; is v restricted to the complement of 2. And we have that, for each ~,

| Hyzl > [ Birysyzl + oo+ IBemyzvzl + [yl 4+ [ Ly 4 nfi
Since this holds for any choice of 7;, for each v

|| > sup{S2i_y [ Biryan| | Dom(n) = 2} + [Layps| + o+ [ Loy | + nfe
Now by (F3) d is the only clause whose head unifies with N7; it follows that, by the
definition of | [, [N7ys| = sup{>20_; |Bin|} + 1, hence we have that, for each v,

| Hyzl > INTy| [ Laysl 4o [ Dy +nfi — 1.
Now the variables of Z do not occur in any atom of this clause we have that, for each

v

[HAyl > INTA[ + [Ty 4+ [Ty |+ nfi =
Since this is a folding step, nfi11 < nf; and hence we have that (b) is satisfied in Py.
|

This implies immediately the desired conclusion

Corollary 3.4.4 lTet F,..., P, be a transformation sequence, then
(a) if Py is acyclic then P, is.
In the case that F, is a definite program, this can be restated as follows

(b) if Py is definite and terminating, then P, is.

Proof. It follows at once from lLemma 3.4.3 a

Transforming left-terminating programs

One would like Corollary 3.4.4b to hold also in the case of left terminating programs,
which are those programs whose LDNF (SLDNF with leftmost selection rule) de-
rivations starting in a ground goal are finite. Left terminating programs form an
important superclass of the terminating programs and, as pointed out by Apt and
Pedreschi [8], there are natural left terminating programs that are not terminating.
However, left-termination is not preserved by the transformation system. In fact, if
we consider the three programs Fy, Py, P, of Example 3.2.7, we have that F, and P,
are left terminating, while P, is not.

In general left termination is not preserved even when Seki’s (more restrictive)
modified folding operation is used. This is shown by the following example.

Example 3.4.5 let Fy, be the following program:
Po=1 e : d(X) — h(X),q(X).

ot op — q(X),h(X).
ez q(s(0)).
ca: h(s(X)) <« h(X). }

Where we adopt the following partition: P,., = {¢1}, Payg = {ca, ca,ca}. It is easy to
verify that the program is left-terminating. Since the head of ¢; is an old predicate

(and then (F4.1) is satisfied), we can fold ¢(X'), h(X) in the body of ¢3. the resulting

program is
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Pr=Aecr,e3,c4t Udes s p—d(X)}
Now the goal P, U { < p} originates an infinite LDNF-derivation. O

In this case the problem is due to the fact that the definition of transformation
sequence is given modulo reordering of the bodies of the clauses, and the operation
of reordering itself does not preserve left-termination.

It can be argued that then what we have to do is to start by adopting the modified
folding instead of the one of Tamaki-Sato and by restating the definition of unfolding
and folding so that the order of the literals in the bodies of the clauses is taken into
account. That is indeed a possible approach, however a fold operation so defined
would be of far more limited applicability than the present one; this holds not only
because the modified folding is more restrictive than the ordinary one, but mainly
because we would have to require that the literals that are going to be folded are all
found next to each other in the exact same sequence as in the body of the folding
clause. This is often not the case, in particular when the folded clause is the result of
some previous unfold operation; notice that this is what happens in Example 3.2.2.

Nevertheless, we can relax the requirement of the acyclicity of the initial program,
by exploiting the result in a modular way. First we need the following definition.

Definition 3.4.6 let P, ..., P, be a transformation sequence and let Py = Qg U R.
We say that the transformation is performed within Qg if there exist programs

Q1,...,Q, such that, for each 1,
e P=0QiUR;

e No clause of R is used as folding or unfolding clause. O

Now we have to use the concept of acceptable programs, introduced by Apt and
Pedreschi in [8]. Here the notation becomes more cumbersome as the notion of
acceptability is bound both to a level mapping and to a (not necessarily Herbrand)
model. For the definition we refer to [8]. Informally, acceptable are to left terminating
programs what acyclic are to terminating ones, in fact in [8] is proven that, in cases of
non-floundering programs, the classes of acceptable and of left terminating programs
coincide.

Corollary 3.4.4a can then be restated as follows.

Proposition 3.4.7 let Fy, ..., P, be a transformation sequence. Suppose that Py
is acceptable wrt the level mapping | | and the model M. If there exists a program
Qo C Py such that (g is acyclic wrt | | and the transformation is performed within
(o, then each P; is acceptable.

Proof. It is a standard extension of the proof of Lemma 3.4.3. O

That is, if the initial program is acceptable (wrt some model and some level
mapping) and if the transformation is performed within a subset of Py which is also
acyclic (wrt the same level mapping), then the resulting program is acceptable (hence
left-terminating) as well.
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3.5 Semantic consequences

From the point of view of declarative semantics, acyclic programs enjoy the following
relevant properties. Here, for the definition and the properties of the Well-Founded
model semantics we refer to [48].

Theorem 3.5.1 let P be an acyclic program, and let M = q');w. Then M is total,
that is, no atom is undefined in it, moreover

(i) M is the unique fixpoint of ®p; hence it is the unique three-valued (and also
two-valued) Herbrand model of Comp(P) and coincides with Fitting’s model
of P.
(it) M coincides with the Well-Founded model of P;
(ili) M coincides with the set of ground atomic logical consequences of
Comp(P)UWDCA, in 2 and 3 valued logic;
(iv) for all ground atoms A such that no SLDNF-derivation of P U { «+ A} flounders,

o Ais true in M iff there exists a SLDNF-refutation for P U { + A};
o Ais false in M iff PU{ « A} has a finitely failed SLDNF tree.

Proof. The fact that M is total and statement (i) are consequences of Lemma 2.6
and Theorem 4.4 in [5]; more general statements are also proven in [8], where the case
of acceptable programs is considered; (i1) is a consequence if (i) and the fact that the

Well-Founded model is also a three-valued model of Comp(P) [48]; (iii) and (iv) are

consequences of Theorem 4.4 in [5]. O

Semantics of transformed programs
An immediate consequence of Theorem 3.5.1 is the following.

Lemma 3.5.2 let Fy, ..., P, be a transformation sequence, suppose that Fyis acyc-
lic, then (T)g: = (T)g:_

Proof. By Theorem 3.5.1, for each 7, the Well-Founded model of P; coincides with
(T);‘;’ and by Proposition 4.1 in [92], the Well-Founded models of P, and P, coincide.
O

Because of Theorem 3.5.1, Corollary 3.4.4 has also some semantic consequences,
the most relevant of which are:

Corollary 3.5.3 let Py, ..., P, be a transformation sequence, suppose that Fy is
acyclic, then

(a) the Fitting’s models of Py and of P, coincide;

(b) the set of ground logical consequences of Comp(Py) U WDCA and of
Comp(P,) UWDCA, coincide;

(¢) for all ground atoms A such that no SLDNF-derivation of Py U {+ A} and of
P, U { + A} flounders,

o there exists a SLDNF-refutation for Py U { < A} iff there exists one for
P, U{ <« A},
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o all SLDNF trees for Py U { «+ A} are finitely failed iff all SLDNF trees for
P, U{+ A} are;

in particular we have that
(d) Tf Py is definite, then its Finite Failure Set coincides with the one of P,. O
This shows that if the initial program is acyclic, then the transformation enjoys
most of the properties that were proven for Seki’s more restrictive modified folding.

In some situations this can be useful for relaxing the applicability of the folding

operation.






Chapter 4

Transforming Normal Logic Programs by
Replacement

In this chapter we study simultaneous replacement which consists in performing many
replacements all at the same time, and define applicability conditions able to guar-
antee the correct application of the operation in normal programs with respect to
the semantics of the logical consequences of the program’s completion (Kunen’s se-
mantics). We also take into consideration the case in which we adopt some domain
closure axioms, this will allow us to draw conclusions for Fitting’s semantics as well.
As we mentioned in chapter 1, a basic requirement for the applicability of replacement,
is that the replaced and replacing parts are equivalent with respect to the considered
semantics. But this alone is not sufficient to avoid the risk of introducing a loop. For
this reason we introduce two new concepts: the semantic delay between two conjunc-
tions of literals and the dependency degree of a conjunction of literals wrt a clause:
the applicability conditions for replacement we propose compare the semantic delay
between the two conjunctions of literals and the dependency degree of the replaced
part with the clause to be transformed. In this way it is possible to characterize some
situation in which "there is no space to introduce a loop”. Such applicability con-
ditions are undecidable in general, but decidable syntactic conditions can be derived
for special cases. For instance in chapter 5 these results will be used for proving the
correctness of an unfold /fold transformation sequence wrt Fitting’s semantics.

Structure of the Chapter

In Section 4.1 we study the correctness of the replacement operation wrt Kunen’s
semantics. In section 4.2 we reformulate the results for the cases in which we adopt
some domain closure axioms. In Section 4.3 some examples are provided and it is
shown also how thinning and fattening can be seen as special cases of replacement,
thus yielding, as a consequence, conditions for a safe application of these operations
to normal programs. A short conclusion follows. Part of the proofs are given in the
Appendices.



OCHO

36 Chapter 4. Transforming Normal Logic Programs by Replacement

The simultaneous replacement operation

The replacement operation has been introduced by Tamaki and Sato in [96] for defin-
ite programs. Syntactically it consists in substituting a conjunction, C', of literals with
another one, D, in the body of a clause. Similarly, simultancous replacement consists
in substituting a set of conjunctions of literals {(:H ey (:Yn}7 with another correspond-
ing set of conjunctions {Dy,..., D,} in the bodies of some clauses {cly,...,cl,} of a
program P. We assume that if 7 # j then C; and (:Yj do not overlap, even if they may
actually represent identical literals, that is, they are either in different clauses or in
disjoint subsets of the same clause.

Note that, because of the semantics we consider, the order of literals in the bodies
of the clauses is irrelevant.

4.1 Correctness wrt Kunen’s semantics

In this Section we will always refer to a fixed but unspecified infinite language L,
that we assume contains all the function symbols of the programs we are consider-
ing. Again, by infinite language, we mean a language that contains infinitely many
functions symbols (including those of arity 0). As we explained in section 2.2, three
valued program’s completion semantics in the case of an infinite language is com-
monly referred to as Kunen’s semantics.

Assume P’ is obtained by transforming P, then Definition 2.2.2 (program’s equi-
valence) is used to define the correciness of a transformation operation as follows.

Definition 4.1.1 Let P, P’ be normal programs. Suppose that P’ is obtained by
applying a transformation operation to P. We say that the transformation is

o Partially Correct when for each allowed formula ¢, if Compg(P') E ¢ then
also Compc(P) E ¢.

o Complete when for each allowed formula ¢, if Comps(P) | ¢ then also
Compe(P') |-

o Totally Correct or Safe when it is both partially correct and complete. This
is the case in which P and P’ are equivalent . O

Note that the transformation is partially correct if all the information contained in
(the semantics of) P’ was already present in (the semantics of) P, that is if no new
knowledge was added to the program during the transformation. On the other hand
the transformation is complete if no information is lost during the transformation.

Partial correctness

When we replace the conjunction €' with 1 in the body of a clause, we are actually
replacing a subformula inside a formula, the clause itself. Clearly, some conditions
are needed to guarantee the safeness of the operation. When we abstract from the
particular context, that is from the specific clause where the replacement occurs, a
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natural condition for replacing a (possibly open) formula y by a (possibly open)
formula ¢ is their equivalence in the sense of the following definition.

Before stating it we need to establish some further notation: given the formulas (,
x and ¢, we denote by ([¢/x] the formula obtained from ( by replacing all occurrences
of the subformula y by ¢.

Definition 4.1.2 (equivalence of formulas) let y, ¢ be first order formulas. We
say that

o X is less specific or equal to ¢ (wrt Compe(P)), X =compe(py ¢, iff for each
allowed formula ( and each substitution o,

Compe(P) E (o implies  Compe(P) E (o) x]o;

o x is equivalent to ¢ wrt Compe(P), X Zcompppy ¢ X =compa(p) ¢ and
Qb jCom,pE(P) X- O

The following Fxample shows how the problem of the equivalence of formulas
naturally arises when using the replacement operation.

Example 4.1.3 l.et us consider the following program:

1 (L[| Tail] 5(0)).
m1(F ,[X |T(17/] s(N)) < ml(FIl,Tail, N).
WQ(F/ [Fl il]).
m2(Fl, [X | Tail]) — m2(FI, Tail).
d: common_element(L1,12) <« ml1(FKl, L1, N1),ml1(Fl, 12, N2).

Both predicates m1 and m2 behave like “member” predicates. The only difference
between the two is that m1 "reports”, as third argument, the location where element
El has been found. As far as the definition of common_element goes, this is totally
unnecessary, and we can replace the conjunction m1(FKIl, L1, N1),m1(Fl, L2, N2)
with the conjunction m2(Fl, 1), m2(Fl, 1.2) in the body of d, without affecting the
semantics of the program. In practice we want to replace clause d with
d" : common_element(L1, 1L2) « m2(FIl, L1),m2(FIl, L2).

Now observe that the completed definition of common_element before the transform-
ation is

common_element(L1,12) & AN, M. m1(FKl, L1, N),m1(FEl, 12, M), (4.1)
while after the transformation it is

common_element(L1, 1.2) & m2(Kl, L1),m2(Fl, 1.2). (4.2)

When applying a replacement we want the replacing conjunction to be semantic-
ally equivalent to the replaced one. In this particular case we can formalize this
statement by requiring the equivalence of the two “bodies”, (4.1) and (4.2), of the
completed definition of common_element, that is, we require that

AN, M. m1(EL L NY,ml (BL L2, MY g, py m2(EL L), m2(EL 12). (4.3)

Which is easy to prove true. 0
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In (4.3) we have specified two existentially quantified variables: N and M which
are local to the replaced conjunct. If we didn’t do so, (4.3) would not hold, as
m1(FEL L1, N),mI(EL L2, M) Zoomppy m2(FL L1),m2(Fl, L2). In the sequel,
when replacing, say, C' with 1. we always specify a set # of “local” variables, which
are variables that can appear in either (' or D (or both) but cannot occur in the rest
of the clause where ' is found. Consequently, our first requirement is the equivalence
of 37 C and 3 D. Such an equivalence is weaker than the equivalence between ('
and D, but still sufficient for our purposes.

We now formalize this concept of local variables for simultaneous replacement.
First let us establish the notation we’ll use throughout the chapter.

Notation 4.1.4

P is the normal program we want to transform.

C1....,C, are the conjunctions of literals we want to replace with Dy,.... D,,.
{cli, ... cl,} is the subset of P consisting of the clauses that are going to be affected
by the transformation.

P’ is the result of the transformation. O

Definition 4.1.5 (locality property) Referring to Notation 4.1.4, we say that a
set of variables 7; satisfies the locality property with respect to C; and D; if the
following holds:

o 7. C V(J,r((:ﬂ;) U V(],T(f)i) and the variables in 7; do not occur anywhere else
neither in the clause ¢l;, where (J; is found, nor, after replacement, in cl’;, where

]~77; is found. O

Note that the locality property is trivially satisfied when #; is empty. Note also
that the locality property implies that if ('), and 'y occur in the same clause then the
corresponding 7, and 7}, are disjoint.

Before we state the result on partial correctness, we have to give a characterization
of the equivalence of formulas wrt Kunen’s semantics, which refers solely to the Kleene
sequence of the operator ®p. Here we denote by FV( ) the set of free variables in a
formula y.

Lemma 4.1.6 et P be a normal program, y, ¢ be first order allowed formulas and
T =Axr,...,2} = FV(x) U FV(¢@), The following statements are equivalent

(a) x =Compe(P) P ) )
(b) Yn Im Vi OF = (=)y(i/7) implies OF" = (=)o(i/7);

where n, m are quantified over natural numbers and # is quantified over k-tuples of
L-terms.

Proof. The proof is given in the Appendix A. O

We can finally state the result on partial correctness of the replacement operation
we were aiming at. As we anticipated at the beginning of this Section, when replacing

C with D, our first requirement is the equivalence of 3# C' and & D, where = is a
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set of variables satisfying the locality property. However, if we are only interested
in proving the partial correctness of the operation, a partial equivalence (namely,
that 37 D =Compe(P) 3T (Y) is perfectly sufficient. This is shown by the following
Theorem. Again we adopt Notation 4.1.4.

Theorem 4.1.7 (partial correctness) If for each C; € {Cy,...,C,}, there exists
a (possibly empty) set of variables 7, satisfying the locality property wrt C; and D;
such that

i D; =Comps(P) T C;

then the simultaneous replacement operation is partially correct.

Proof. First let us make the following ohservation. With the exception of clauses
{ch,...,cl,}, Pisjust like P'. Hence if for each 4, 37, C; and 37; D; had the same
meaning in a given interpretation /., (that is, if I E 33 C, < 33, f)7;)7 then we would
have that ®p(1) = ®pi(1). Tt follows ‘rha‘r whenever ®p(l) # ®pi(T), there has
to be an index j such that 3z; Cj and 31, D have different meanings in 7. This
idea is formalized and extended in the fo”owmg LLemma, whose proof is given in the

Appendix A.
Lemma 4.1.8 Let I, I" be two partial interpretations. If I C I but ®p/(I") € ®p(T),
then there exist a conjunction C; € {Cy,...,C,} and a ground substitution 6 such
that:

o either I |= 3, D;0, while T j= 3i; C0;

o or I' =—-3%; D 0, whﬂe I~ —-35, 0. O

Now we proceed with the proof, which is by contradiction. By Theorems 2.2.3 and
2.2.4 the operation is partially correct iff Vn 4m q');m ) d’);”,’j so let us suppose there
exist two integers 7 and j such that:

oL D@l and  for all integers [, &1 2 o1+
Clearly it also follows that
for all integers [, N+ 2 q')yf].

Since ¢T7+1 = qu'(qj;j,), q’ﬁj > (T)y, and ®p/ is monotone, we have that qul(qjy) D

®T7+1 , hence

for all integers [, q')p(q')yﬁ) ), q')p/(q')g).

Since ¢Tl+i ) q')g, from Lemma 4.1.8, it follows that for each integer / there exist an
integer j(1) € {1,...,n} and a ground substitution #; such that:

BRI f) i1 is true (or false) in ol while 330y Ciyr is not true (vesp. false) in T+
(4.4)

By hypothesis 37, f)i(l) = Compe(P) 3 Tj(1) (:Yj(l), we can then apply Lemma 4.1.6

to the left hand side of (4.4). Tt follows that there has to be an integer r such that

for each [,

33,0y Ciy0i is true (vesp false) in ol
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but when [ satisfies [ +i > r, we have that ®B% D &1 and hence

for each [ such that [ +1>r,  JF; 07(1)91 is true (resp false) in @y“.

This contradicts (4.4). 0O

An immediate consequence of previous Theorem 4.1.7 is the following simple
Corollary on total correctness.

Corollary 4.1.9 Using Notation 4.1.4, if for each C; € {01,...7(?”}7 there exists
a (possibly empty) set of variables ¥, satisfying the locality property wrt C; and D;
such that

35 D; Zeompepy 333 O
then P is equivalent to P’ iff, for each 7, 32, f)i = Comp(PY) JTi a

Proof.

“if”. From the assumption that 42; D; = Compa(P) T C; and Theorem 4.1.7
it follows that for each allowed formula ¢, if Comps(P’) |E ¢ then Compe(P) | ¢.
Now P can be re-obtained from P’ by replacing back each D; with C;, moreover each
set of variables #; safisfies the locality property wrt C; and D; also in P’. Since by
hypothesis 97, D; = Compn (P T (:Y“ from Theorem 4.1.7 it also follows that | if
Compe(P) = ¢, then Compe(P') | ¢.

“only if”. Tt is easy to see that if 42; D; = Comp(P) T C; and P is equivalent
to P’ then 37'7 ]~77j ;Oomlpﬁ(])l) 37'7 (Z i

Roughly speaking, this Corollary states that if the replacing and the replaced
conjunctions are equivalent both in the initial and the resulting program, then the
transformation is safe.

Of course this result requires some knowledge of the the semantics of the resulting
program and therefore it is not quite satisfactory: what we want are applicability
conditions for the replacement operation which are based solely on the semantic
properties of the initial program. To this is devoted the rest of this Section.

Semantic Delay and Dependency Degree

As we proved in the previous Section, if 7 is a set of variables that satisfies the locality
property, the equivalence of 37 €' and 37 D wrt Compc(P) is sufficient to guarantee
the partial correctness of the replacement. Unfortunately this is not enough to ensure
total correctness.

This is shown by the next Example.

Example 4.1.10 Let P be the following definite program:

P=A{ p < q.
cl: g+

T. 1

Let also £ = L(P). In this case p, ¢ and r are all true in all the models of Comp.(P),
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they are actually equivalent wrt Compc(P). However, if we replace r with p in the
body of ¢l we obtain

P ={ p < q.
' g+ p.

T. 1

which is by no means equivalent to the previous program. In fact we have introduced
a loop and p and ¢ are no more true in all the models of Compc(P). O

In order to obtain the desired completeness results we introduce two more con-
cepts: the semantic delay and the dependency degree. They are meant to express
relations between first order formulas, such as conjunctions of literals, in terms of
their semantic properties.

Consider the following definite program:

P={ m(X) —  n(s(X)).

n(0).
n(s(X)) « n(X). }

The predicates m and n have exactly the same meaning, but in order to refute the goal

— m(s(0)). we need four resolution steps, while for refuting < n(s(0)). two steps
are sufficient. Each time < n(#). has a refutation (or finitely fails) with j resolution
steps, < m(t). has a refutation (or fails) with k resolution steps, where k < j + 2.
By transposing this idea into the three valued semantics we are adopting, we have
that each time n(t) is true (or false) in q')y, m(t) is true (vesp. false) in q')ym. We
can formalize this intuitive idea by saying that the semantic delay of m wrt n is 2.

Definition 4.1.11 (semantic delay in q');w) let P be a normal program, y and
¢ be first order formulas, and ¥ = {a4,..., 21} = FV(x)U FV(¢). Suppose that

Qb jCom,pE(P) X-
o The semantic delay of x wrt ¢ in q');w is the least integer £ such that, for each
integer n and each k-uple of L-terms i: if ®5 = (=)¢(f/F), then & =

(=)x(1/7). 0
Notice that since we are assuming that ¢ <comp.(p) X, if &(1/%) is true in some ol

then there has to exists an integer m such that y(f/#) is true in 5"

Intuitively, ¢(1/%) is true in q');n iff its truth has been proved from scratch in at most
n steps. The semantic delay of y wrt ¢ shows how many steps later than ¢(1/7), we
determine the truth value of x(#/3) (at worse).

Example 4.1.12 Let P be the following program:

P={ p0). q(0).
p(s(0)). q(s(X)) < q(X).
p(s(s(X))) < p(X). }

p and g both compute natural numbers, and p(X) Zgomp,(py  ¢(X), but while
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q(s¥(0)) is true starting from q,);k+17 p(s¥(0)) is true starting from q')gk/z)H. The
delay of p(X) wrt ¢(X) in q');w is zero, in fact if for some ground term  and integer
n, q(1) is true (resp. false) in @;”'7 then p(t) is also true (vresp. false) in q');n. Vice
versa, the delay of ¢(X) wrt p(X) is not definable, in fact there exists no integer
m < w such that if, for some ground term ¢ and integer n, p(t) is true (vesp. false)
in q');n, then ¢(1) is true (resp. false) in q')gﬂ_m. O

A simple property of semantic delay which is used in the sequel is the following.

Lemma 4.1.13 Tf d : A« L. is the only clause in a program P whose head uni-
fies with an atom A, and 1w is the set of variables local to the body of d, @ =

Var(L)\Var(A), then

[ ] A ;Compg(P) 317) f/,
e the delay of A wrt 31 L in q');w is one.
Proof. It is a straightforward application of the definition of Fitting’s operator, since,

by Definition 2.1.6, for all integers r and substitutions 6, (Fw f/)ﬂ is true (false) in
@, iff Af is true (false) in O O

Now we want to introduce one further concept: the dependency degree. l.et us
consider the following normal program:

P={ cl: p <+ —g,s.
c2: q <+ 7.
ey

cAd: s« q }

The definitions of the atoms p, ¢, s and r, all depend from clause ¢3. Informally we
could say that the dependency degree of the predicate p over clause ¢3 is two, as the
shortest derivation path from a clause having head p to ¢3 contains two arcs: the first
from ¢l to ¢2, through the negative literal —¢; the second from 2, to 3, through the
atom r. Similarly, the dependency degree of ¢ and s on ¢3 are respectively one and
two and the dependency degree of r on €3 is zero. The next definition formalizes this
intuitive notion. The atom A and the clause ¢l are assumed to be standardized apart.

Definition 4.1.14 (dependency degree) l.et P be a program, ¢l a clause of P
and A an atom. The dependency degree of A (and =A) on cl, depenp(A,cl), is

0 if A unifies with the head of ¢f;

n+1if A does not unify with the head of ¢/ and n is the least integer such that there
exists a clause C' « (4,..., (. in P, whose head unifies with A via mgu, say,
0, and, for some i, depenp(C;0,cl) = n;

w when there exists no such n. In this case we say that A is independent from cl.

Now let I = Ly,..., L, be a conjunction of literals. The dependency degree of . on
clis equal to the least dependency degree of one of its elements on ¢, depenp(f/, c) =
inf{depenp(L;, cl), where 1 <i < mn}. Similarly, I is independent from cl iff all its
components are independent from ¢l. O
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The following Fxample shows how the concepts of dependency degree and semantic
delay can be used to prove the safeness of the replacement operation.

Example 4.1.15 Consider the following normal program:

P={ d: p(X) « —q(X).
el: r — g, ...

}

where d is the only clause defining the predicate symbol p. By Lemma 4.1.13
P(X) Zcomppy —G(X). Now, if we replace =q(t) with p(t) in cl, we obtain the
following program:

Pr={ d: p(X)

cl: r

which has the same Kunen’s semantics of the previous one, that is the set of logical
consequences of Compg(P) and of Comps(P’) are identical. This holds even if the
definition of p is not independent from ¢l; that is, even if we are exposed to the risk
of introducing a loop, losing completeness. But in this case we can show that “there
is no room for introducing a loop”; in fact

o the dependency degree of p on ¢l (this is how big the loop would be) is greater
or equal to the semantic delay of p(X) wrt —q(X) (this can be seen as the
“space” where the loop would have to be introduced).

By Lemma 4.1.13 the delay of p(X') wrt =¢(X) in q');w is one; moreover, since d is the
only clause defining the predicate p and d # ¢l, depenp(p(X),cl) > 0, thus satisfying
the above conditions. O

Completeness

The aim of this section is to provide a completeness result which formalizes the idea
outlined in Example 4.1.15 and that matches with Theorem 4.1.7. Throughout this
Section we adopt Notation 4.1.4.

Let us first state a few simple results.
The first Remark states that when a conjunction of literals L is independent from
clauses {cly, ..., cl,} then its meaning does not change when replacing {cly, ..., ¢cl,}

with {ely, ... el }.

Remark 4.1.16 TLet I be a conjunction of literals independent from the clauses
{chh,...;cl,} in P. Let @0 = Var(L), Then, for each ordinal a,

e O = (m)Iw L it B = (=)Tw L. 0

The following LLemma represents an important step in the proof of the complete-
ness result.

Let I be an L-interpretation and B a ground atom that can be proved frue (or
false), starting from I, in m steps, that is, B is frue in q');m(f). The Lemma states
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that if the dependency level of B on {cly,...,cl,} is greater or equal to m, then the
clauses {cly, ... cl,} cannot have been used in the proof of B, hence B is true in
q')g?(f) too.

Lemma 4.1.17 Let B be a ground atom, m a natural number such that depenp( B, {cly, ..

m; then

o Bis true (vesp. false) in ®L"(1)  iff B is true (vesp. false) in ®57 (7).

Proof. The proof is by induction on m.

The base of the induction (m = 0) is trivial, since q');jo,(f) = q')g)(f) = 1.

Induction step: m > 0. We will now proceed as follows: in a) we show that if B
is true (resp. not false) in q');m(f), then it is also true (resp. not false) in q')g?(f).
That is, we show that if B is true in q');m(f), then it is also frue in q')gf'(f); and, by
contradiction, that if B is false in q')TTT'(I), then it is also false in q');m(f). In b) we
consider the converse implications. This will be sufficient to prove the thesis.

a) Let us assume B true (resp. not false) in q');m(f). There has to be a clause
¢ € P and a ground substitution v such that head(c¢)y = B and body(c)y is true (resp.
not false) in q')g)%1 (7). Tt follows that, for each literal I belonging to body(c)y:

- I is true (resp. not false) in q');m*](f);

- depenp (L, {cli,....cl,}) >m — 1.

Then, from the inductive hypothesis, each L is true (resp. not false) in q')g?*](f).
Since depenp(B,{cli,....cl,}) > m > 0, B does not unify with the head of any
clause in {cly, ... cl,}, that is ¢ & {cly,...,cl,}. Hence ¢ € P" and B is true (not
false) in J)LT’(I).

b) Now we have to prove that if B is true (not false) in q')g?(f)7 then it is also
true (not false) in q');m(f). This part is omitted as it is perfectly symmetrical to the
previous one. 0O

The previous Lemma leads to the following generalization.

Lemma 4.1.18 Let 7, be a conjunction of literals, @ = Var(L) and T be an L-
interpretation. Suppose that, for some integer m, depenp(L,{cli,... cl,}) > m,
then,

e O ()T L it () E(-)Tw L.

Proof. Tet I = Ly,..., L;. Observe that depenp(L,{cl, ... cl,}) > m implies that
for v € [1,7], depenp(L;, {ch, ... cl,}) > m.

Suppose first that b L is true in q');m(f). Then for some ground substitution 6,
with Dom(6) = w, 1.6 is true in q');m(f). Then for 7 € [1,4], 1,0 is true in q');jm(f)7
and by Lemma 4.1.17, it is true also in q')g?(f). Hence the conjunction L8 is true in
q')g?(f). Tt follows that J I is true in q')g?(f).

Now suppose that 3 I is false in q');m(f). Then for each ground substitution 6,
with Dom(0) = w, 1.6 is false in q');m(f). That is, for each of the above 8, there exists
an 7 € [1,7] such that 1,0 is false in q');m(f). By Lemma 4.1.17 ;0 is also false in
d’)LT‘(I). Hence L0 is false in q')gf'(f). It follows that 3@ L is false in q')TT?([). O

elpt) >
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We can now state the completeness result. As before, we refer to Notation 4.1.4.

Recall that, when replacing C' with D, in order to prove the partial correctness
of the rep]acemen‘r operation, we required that 3% D =Compe(P) 3T D where z is
a set of variables satisfying the locality property. It should be no qurpriqe that to
prove the completeness of the operation we have to require the opposite side of the
equivalence, namely that 3% C = Compp(P) 17T D.

Theorem 4.1.19 (completeness) If for each C; € {Cy,...,C,}, there exists a
(possibly empty) set of variables 7, satisfying the locality property wrt C; and D,
such that

37 Ci =Zompe(py 371 Di,
and if one of the following two conditions holds:

(a) {Dy,...,D,} are all independent from the clauses {cli, ... cl,}; or

(b) there exists an integer m such that, for each C; € {ﬁ17...,én}7 and each
ey € {cly, ... cl,}:
- the delay of 47; D; wrt 3%; C; in q');w is less or equal to m, and
- depenp(f)“clj) > m;

then the simultaneous replacement operation is complete.

Proof. First we need to establish a Lemma similar to the one in the proof of Theorem

4.1.7.

Lemma 4.1.20 Let 7, I" be two partial interpretations. If I C I' but ®p(/) ¢
Gpi (1), then there exist a conjunction (Y, e {C1,...,C,} and a ground substitution
f such that:

o cither [ |=3; C;0, while I' £ 33, D;0;
o or [ 33, (Y 0, while I £ -3 %, D;0.

Proof. The proof is identical to the one given in the Appendix A for LLemma 4.1.8 in
Theorem 4.1.7, and it is omitted. 0

Again the proof of the Theorem is by contradiction. By Theorems 2.2.3 and 2.2.4 the
operation is complete iff Vo 4 m q');n C q')g?, so let us suppose that there exist two
integers 7 and j such that:

T, D ®Y and for all integers [, ®LFT 2 o+

Since @ = @ (q')Tj) from Lemma 4.1.20 we have that:
for each integer [ there exists an integer j(/) € {1,...,n} and a ground substitution
0; such that:

330y Ciy0r is true (or false) in quv while 32,y ]5'7(1)91 is not true (resp. not false)
(4.5)

Let us distinguish two cases.

1) Hypothesis (a) is satisfied and each conjunction in {Dy,...,D,}isindependent

from {cly,...,cl,}. By hypothesis 33 C; <comp,(py 3% Dj, we can then apply

. i+
n q')gﬁ_.
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Lemma 4.1.6 to the left hand side of (4.5), it follows that there has to be an integer
r such that for each [,

3350y 12)'74(1)91 is true (resp. false) in @7,

From Remark 4.1.16, it follows that for each integer I, 37, 12)'74(1)91 is true (resp.
false) in &7,

This contradicts (4.5); in fact, when 7 + [ > r, by the monotonicity of ®p., we have
that &%, C & and since ;0 ]5'7(1)91 is true (vesp. false) in ®%,, it must be true
(resp. false) in ®F.

2) Hypothesis (b) is satisfied. We know that for each integer /, the delay of
A7y Dy wrt 3250y Ci0y is not greater than m, hence from the left hand side of
(4.5) it follows that,

for each [, d7;(, 12)'74(1)91 is true or false in q')';j'm.

Since ®LT" = &(}), it follows that,

for each I, 37, ]5'7(1)91 is true (resp. false) in (T)T}Q(d);j)_
depenp(f)j(,)ﬂl, {ch,...,cl,}) > m, then, from Lemma 4.1.18 it follows that,

for each I, 37,0 12)'74(1)91 is true (vesp. false) in q')TP"’,(q')';;).
Now @';3 C &%, and ®p/ is monotone, then,

for each I, 37, ]5'7(1)91 is true (vesp. false) in O, (BL,) = GBF

this contradicts the right hand side of (4.5). 0

Finally, from Theorems 4.1.7 and 4.1.19 we obtain the following safeness result for
the replacement operation.

Corollary 4.1.21 (applicability conditions for the replacement operation) Using
Notation 4.1.4, if for each C; € {C4,...,C,}, there exists a (possibly empty) set of
variables 7; satisfying the locality property wrt /; and D, such that

A2 Di Zcomp.(py 37 C

and one of the following two conditions holds:

1. {Dy,...,D,} are all independent from the clanses in {cl, . .. el or

2. there exists an integer m such that, for each O € {(:Yh...,(:yn}? and each
ey € {cly, ... cl,}:
- the delay of 47; f)i wrt 37; (:th n q');w is less or equal to m, and

- depenp(D;, cl;) > m;

then the simultaneous replacement operation is safe, that is P is equivalent to P’. O
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Conditions 1 and 2 reflect two different ways in which we can guarantee that we
are not introducing dangerous loops. Condition 2 is automatically satisfied when,
for each i, the semantic delay of 3%; D; wrt 37; C; in q');w is zero. This is probably
the most interesting situation in which it can be applied. Recall that the semantic
delay of 47; f)i wrt 37; (:th shows (for each #) how many steps later than 33; (1;97 we
determine the truth value of 37; D;0 (at worse). Therefore, when the delay is zero,
we can determine the truth value of 3#; D;0 “faster” than the truth value 3; C;6.
By stretching the notation we could say that in this case 33, D; is “more efficient”
than 34, ;. By the above Corollary we have that if the replacing conjunctions are
“equivalent to” and “more efficient than” the replaced ones, then the replacement
is safe. This fits well in a context where transformation operations are intended
for increasing the performances of programs. Of course here we are referring to a
bottom-up way of determining truth values, while most resolutions methods employ a
top-down search, hence what is considered “more efficient” here may not necessarily
be “more efficient” when we actually run the program.

Other Semantics

Corollary 4.1.21 can easily be applied to other declarative semantics. Basically what
we need is a definition of equivalence and semantic delay: any model theoretic se-
mantics which can be defined in terms of the Kleene sequence of some operator is
potentially suitable. For example the Well-Founded semantics is appropriate, while
the 2-valued completion semantics (considered in [47]) is not, as it lacks a construct-
ive definition. Of course, when we change the semantics we refer to, the concept of
equivalence of programs and formulas can differ significantly.

Let us for example consider the S-semantics [39], a model theoretic reconstruction
of the computed answer semantics'. The S-semantics does not take into consideration
the negative information that can be inferred from (the completion of) a program.
This influences significantly the applicability conditions of replacement. Consider for
instance the following program:

P=A{cl: p+q,p.}

g has no definition and therefore it fails. If we eliminate ¢ from the body of ¢l, we
obtain

P'={cl: p+p.}

The S-semantics (as well as the least Herbrand model semantics) of P and P’ coincide
(they are both empty as both p and ¢ do not succeed in either program), so this
transformation is (S-)safe. Now let us show how the S-correspondent of Corollary
4.1.21 can be applied to this situation: the transformation of P into P’ can be seen
as a replacement of ¢, p with p in the body of ¢/, and we have that

- q,p is equivalent to p in the S-semantics of P (neither succeeds),

- the delay of p wrt g, p in T&(P)? is zero,

YA result similar to Corollary 4.1.21 for the S-semantics is given in [20]
?Tg(P) is the S-semantics counterpart of ®p
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- depenp(p,cl) =0,
Hence the applicability conditions for the S-version of Corollary 4.1.21 are satisfied.

Now, if we switch back to Kunen’s semantics, P is no longer equivalent to P’, in
fact, Compc(P) = —p while Comps(P’) = —p. In the transformation we have lost
some negative information, the replacement is therefore not (Kunen-)safe. Indeed,
the applicability conditions of Corollary 4.1.21 are not satisfied as

S0P Zcomps(P) P

- the delay of p wrt ¢, p in q');w is one. (q');1 E —(q,p), while d);? E —p),

- depenp(p,cl) =0,
Here the delay of p wrt g, p is greater than depenp(p, c¢l) and consequently Corollary
4.1.21 is no longer applicable. This is due to the fact that, since we are now taking
into account also the negative information, the delay of p wrt ¢, p is no longer zero.

However, there exists a semantics, the Well-Founded semantics, that does take
into consideration negative information, but for which the above programs P and P’
are nevertheless equivalent. Loosely speaking, the Well-Founded semantics does not
distinguish finite from infinite failure. So the query < p fails both in P (finitely) and
in P (infinitely). The authors have also stated a counterpart of Corollary 4.1.21 for
this semantics [38]. It can be applied to the transformation performed above: we have
that ¢, p is equivalent to p and that the delay of p wrt ¢, p is zero. The applicability
conditions for the replacement operation are then, in this context, satisfied.

Checking applicability conditions

Determining whether two conjunctions of literals are equivalent is in general an unde-
cidable problem, moreover, the semantic delay is not a computable function, and for
this reason Corollary 4.1.21 must be regarded as a theoretical result. Tt is therefore
important to single out some situations in which its hypothesis can be guaranteed
either by a syntactic check or, when the replacement belongs to a transformation
sequence, by the previous history of the transformation. This Section shows some of
these situations. Later, in Section 4.3 we also show an example of a transformation
sequence in which the conditions of Corollary 4.1.21 are checked by hand. We hope
that this provides a better understanding of the concepts we use.

Reversible folding

We now show how Corollary 4.1.21 can be used to prove the correctness of the
reversible folding operation, which is the kind of folding operation studied in [67, 47].
First of all let us state its definition.

Definition 4.1.22 (reversible folding) Tet ¢/ : A« B, 5. and d: H <« B be
distinct clauses in a program P; let also w be the set of local variables of d, w =

Var(B)\Var(H). Tf there exists a substitution 8, Dom(#) = Var(d) such that
(1) B’ = B,
(i1) 0 does not bind the local variables of d, that is for any x,y € w the following
three conditions hold
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e 1 is a variable; )
e 26 does not appear in A, S, Hb,
o if v #£ y then 20 # yb,

(iii) d is the only clause of P whose head unifies with H0);
then we can fold H# in ¢, obtaining ¢l’ : A<« H#, S. O

Example 4.1.23 l.et us consider the following program:

P={ c: p(X) —q(X,b),-s(X),r(a, X).
d: r(74Y) «qV.7),—s(Y).
a,Y) +p(Y).

X, b). +
With § = {b/7, X/Y}, we have body(d)0 = (q(X,b),—=s(X)) and that d is the only

clause of P whose head unifies with r(7,Y)f. Hence we can fold clause ¢l, thus
obtaining the program:

P={ c: p(X) —r(b, X),r(a, X).
d: r(74Y) «qV.7),—s(Y).

O

This operation can be seen as a special case of replacement in which the conditions
of Corollaries 4.1.21 are always satisfied. First of all notice that, by using the notation
of Definition 4.1.22, the operation reduces to a replacement of B’ with Hf. Now by
the conditions on folding (i)...(iii) and Lemma 4.1.13, we have that

- satisfies the locality property wrt B’ and H, (recall that @ is the set of local
variables of d);

- H# is equivalent to 308 B, (Lemma 4.1.13);

- the delay of HO wrt Jwh B in q');w is one, (Lemma 4.1.13).

Finally, from (iii) we also have that the dependency degree of depenp(HO,cl) > 0.
Hence, the applicability conditions of Corollary 4.1.21 are satisfied and the operation
is safe.

Recursive folding

The reversible folding operation is a rather restrictive kind of folding, in particular
it lacks the possibility of introducing recursion in the definition of predicates. This

sequences were introduced in the area of logic programming by Tamaki and Sato [96]
and, as a large literature shows, proved to be an effective methodology for program’s
development and optimization.

The following Fxample shows how this kind of folding can be used for introducing
recursion in definitions.
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Example 4.1.24 We start with the following program where initial defines the prop-
erty of being a prefix of a list.

Po=4 d: initial(Xs, 7s) — append(Xs,Y s, 7s).
append([A|Xs],Ys, [A|7Zs]) <+ append(Xs,Y s, 7s).
append([],Y's, Vs). }

We now unfold the body of the first clause, obtaining the two clauses

Py =1 ¢l initial([A|Xs],[A|7s]) <+ append(Xs,Y s, 7s).
initial([], 7).
together with the clauses defining append '}

The safeness of the unfolding operation is proven in Appendix C. Now we can fold
append(Xs,Y s, Zs) in the body of the first clause, using d as folding clause. We
obtain

Py =o o' nitial([A|X 8], [A|7Zs]) < initial(Xs, 7s)
initial([], 7s).
together with the clauses defining append }

The predicate initial has now a recursive definition.

Notice that the folding operation of the above example can be seen as a replace-
ment of append(Xs,Y s, Zs) with initial( X's, 7Zs), and also in this case the applicab-
ility conditions of Corollary 4.1.21 are satisfied, in fact we have that:

- Vs satisfies the locality property wrt append(Xs,Ys, 7Zs) and initial( X s, 7 s)
in P,

- nitial(X s, 75) Zcompppy 3Y s append(Xs,Ys, Zs);

- the delay of initial( X's, 7Zs) wrt AY s append(Xs,Ys, Zs) in Py is zero.

The last two statements are also consequences of the following more general result
which will be proven in chapter 5 (it follows directly from Lemma 5.3.2).

Observation 4.1.25 Tet H < B be a non-recursive clause in a program P and, w be
its set of local variables 1w = Var(B)\Var(H). If P’ is a program obtained from P
by unfolding all the atoms in B then H =Comp,(py 1w B, and the delay of H wrt
Jw Bin P is zero. 0

This provides a further example of the kind of situations to which Corollary
4.1.21 can be applied. Actually, chapter 5 we’ll prove a correctness result over the
correctness of unfold/fold transformation sequence by using the above observation
and Fitting’s counterpart of Corollary 4.1.21, Corollary 4.2.7.

4.2 Correctness wrt other semantics

The results we’ve just proved can be adapted to the cases in which we adopt some
domain closure arioms. As we have seen in chapter 2 the adoption of such axioms
is important when the underlying language L is finite. Recall that the two kind of
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domain closure axioms we’ll adopt are the weak domain closure azioms (WDCA,)
and the strong domain closure azioms (DCA), both reported in definition 2.3.1.

It is important to observe that when we adopt some domain closure axioms, we
have to modify in the obvious way the Definitions of programs equivalence (2.2.2),
of formulas equivalence (4.1.2) and of correctness of a transformation (4.1.1).

Correctness Results wrt Comp(P) U WDCA,

As we explained in Section 2.3.1, as far as we are concerned the semantics given by
Compe(P)UWDCA, (with £ possibly finite) behaves exactly as Kunen’s semantics.
Consequently, the results that we can prove on formula’s equivalence and on the
replacement operation are identical to the ones given in the previous Section. In
particular Corollary 4.1.9, L.emma 4.1.6 on the equivalence of formulas, Theorems
4.1.7,4.1.19 and Corollary 4.1.21 hold also for this semantics. Let us now restate this
Corollary.

Corollary 4.2.1 (applicability conditions wrt Comp; U WDCA ) Using Nota-
tion 4.1.4, if for each C; € {Cy,...,C,}, there exists a (possibly empty) set of
variables 7; satisfying the locality property wrt /; and D, such that

I3 D; is equivalent to 37; C; wrt Compe(P)UWDCA,,

and one of the following two conditions holds:

1. {Dy,...,D,} are all independent from the clanses in {cly,... ¢l,}; or

2. there exists an integer m such that, for each O € {(:Yh...,(:yn}? and each
ey € {cly, ... cl,}:
- the delay of 47; f)i wrt 37; (:th n q');w is less or equal to m, and
- depenp(D;,cl;) > m;

then the simultaneous replacement operation is safe, that is P is equivalent to P’ (wrt

Compe(P)UWDCA,). O

Correctness Results wrt Fitting’s Semantics

In this section we refer to the semantics given by Compg(P)s UDCAz. As we have
seen in Section 2.3.2, this semantics corresponds to Fitting’s model semantics. Using
Theorem 2.3.5 we can easily characterize the correctness of the transformation wrt
to this semantics by referring to the least fixed point of the ®p operator.

Lemma 4.2.2 Let P, P’ be normal programs and £ be a finite language. Suppose
that P’ is obtained by applying a transformation operation to P. Then the operation
1S

o partially correct iff Fit(P) D Fut(P');

o complete iff Fit(P) C Fit(P');

o totally correct (safe) iff Fit(P)= Fit(P’). 0
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Partial Correctness

We now consider the problem of proving partial correctness of the replacement oper-
ation. When we replace the conjunction C' with D, the first natural requirement we
ask for, is the equivalence of €' and D wrt Compe(P)YUDCA,.

Here we need again Theorem 2.3.5 in order to give a characterization of the
equivalence of formulas wrt Compz(P) U DCA,. First we introduce the three valued
operator =, which is “one side” of < and it is defined as follows: ¢ = y is true
iff ¢ is less specific than vy, that is if ¢ and y are both true (or both false) or if ¢ is
undefined. Tn any other case ¢ = v is false.

Lemma 4.2.3 let x, ¢ be first order allowed formulas and P be a normal program.
The following statements are equivalent:

(a) X =Compa(PYyUDCA, ®;
(b) Fil(P) = x = ¢.

Proof. The proof is given in Appendix A. O

Statement (b) differs from the corresponding one of Lemma 4.1.6. In Lemma 4.1.6
we were considering the completion with an infinite language, which as far as this
LLemma is concerned, is equivalent to assuming a finite language and WDCA,. In
such cases the universe of a model of Comp,(P) may contain non-standard elements,
that is, elements which are not L-terms. Hence the equivalence between all the closed
instances of y and ¢ alone is not sufficient to ensure the equivalence between y and
P.

For example, if we consider the following program where, for simplicity, we refer

to WDCA ,:

P={ n(0).
n(s(X)) < n(X).

and we fix £ = L(P), we have that for each L-term ¢, both n(#) and m() are true in
all models of Comps(P)UWDCAL, but n(X) Zoomp.pyuwnca, m(X). In fact,
let ¢ = Va2 m(x), then Compe(P)UWDCA,; | ¢, while Comps(P)UWDCA, [~
([n(x)/m(2)] (see Example 2.3.2). Indeed m(X) and n(X) must not be considered
equivalent wrt Comps(P)U WDCA,, in fact if we consider the following extension
to program P:

Pr=PU{ ¢« -n(X).
g2 —m(X). }

and L = L(P), n(X) is equivalent to m(X) while ¢; is not equivalent to gs.

Next we give the theorem on partial correctness of the replacement operation we
were aiming at. [t still shows that a partial equivalence between the replacing and
the replaced literals is sufficient to ensure the partial correctness of the replacement,
operation.
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Theorem 4.2.4 (partial correctness) let us adopt Notation 4.1.4, if for each
C; € {Cy,...,C,}, there exists a (possibly empty) set of variables #; satisfying
the locality property wrt C'; and D; such that

A% Di =comp.(Pyunca, 37 C

then the simultaneous replacement operation is partially correct.

Proof. The proof is by contradiction. By Lemma 4.2.2 and the fact that Fit(P) =
Ifp(®p), we have that the operation is partially correct iff Ifp(®p) D Ifp(®Pps), so

let us suppose Ifp(®p) 2 Ifp(Ppr). Since the sequence q')gl, @E, ... is monotonically
increasing and (T)LQ = (0,0) C Ifp(®p), there has to be an ordinal o such that

Ifp(®p) O dﬁﬁf and Ifp(®p) 2 q)gi/+1 — B (B2),

Hence Ifp(®p) 2 ®p(Ifp(Pp)) and p:(Ifp(Pp)) DO ®p(P%)), since & is monotone.
Since ®p(Ifp(Pp)) = Ifp(Pp) we have that

Op(lfp(®p)) 2 Opr(Ufp(@r)). (4.6)

From Lemma 4.1.8 and (4.6) it follows that there exists an integer j and a ground
substitution 0 such that 33, D;0 is true (or false) in Ifp(®p), while 33, C;0 is not.
This, by Lemma 4.2.3, contradicts the hypothesis. O

As it happened with Theorem 4.1.7, this result brings us to a first complete-
ness result: with the notation of the previous Theorem, if for each ¢ we also have
that 32; i =¢omp.(pyunca, T7; C;, then the transformation is safe iff for each

i, 3 ]~77; =Compe(Pyunca, 31; C;. The proof is identical to the one given for
Corollary 4.1.9.

Completeness

We want a completeness result which matches with Theorem 4.1.19. First of all we
need a slightly stronger definition of semantic delay.

Definition 4.2.5 (semantic delay in Ifp(®p)) Let P be a normal program, y and
¢ be first order formulas, and ¥ = {a4,..., 21} = FV(x)U FV(¢). Suppose that

& =Compr(PYUDCA, X-
o The semantic delay of x wrt ¢ in lfp(®p) is the least integer k such that,

for each ordinal o and each k-uple of L-terms #: if ® = (=)¢(i/7), then
SIH = () (7). 0

Unsurprisingly, the difference between this Definition and the one of semantic
delay in q');w (4.1.11) is that here we also have to consider ordinals which are greater
that w.

Now we can prove the completeness result in this case.
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Theorem 4.2.6 (completeness) Tn the hypothesis of 4.1.4, if for each C; € {C1,....C,},
there exists a (possibly empty) set of variables #; satisfying the locality property wrt

(’; and D, such that

12 O Zcomp.(Pyunca, 7 D,
and if one of the following two conditions holds:

(a) {D1,...,D,} are all independent from the clauses {cl;, . .. el or

(b) there exists an integer m such that, for each C; € {Cy,...,C,}, and each
ey € {cly, ... cl,}:
- the delay of 37; D; wrt 37; C; in Ifp(®p) is less or equal to m, and

- depenp(D;, cl;) > m;
then the simultaneous replacement operation is complete.
Proof. The proof is by contradiction. By Lemma 4.2.2 and the fact that Fit(P) =
Ifp(®p) we have that the operation is complete iff Ifp(®p) C Ifp(Pp), so let us suppose
that Ifp(®p) € Ifp(Pp:). By the same argument used in the proof of Theorem 4.2.4,

it follows that there exists an ordinal o such that:
p(@p) 2 O and  Ifp(®p) 2 LT

Since ®pi(Ifp(Ppi)) = lfp(Ppr), it follows that G p/(Ifp(Ppi)) O Pp(Pp).

From Lemma 4.1.20 there exists an integer 7 and a ground substitution  such that:

1%, (:Y]ﬂ is true (or false) in &%, while 33, ]5'79 is not true (resp. not false) in Ifp(®p).
(4.7)

Let us distinguish two cases.
1) Condition (a) of the hypothesis applies, and f)j is independent from {cly,. .., cl,}.
Since &% C Ifp(Pp), from the left hand side of (4.7), 33, C;0 is also true (vesp. false)

in fp(®p). M
Hence, by the hypothesis and TLemma 4.2.3, also 3; D;0 is true (resp. false) in

Ifp(®p). Because of condition (a) and Remark 4.1.16, 33, D;0 is true (vesp. false)
in Ifp(®p). This contradicts the left hand side of (4.7).

2) Condition (b) of the hypothesis applies. The delay of 9%; ]~7j wrt 33 (:Yj is not
greater that m, hence from the left hand side of (4.7) it follows that 3 7, ]5'79 is true (or false) in ®EF™
that is, 3&; D;0 is true (resp. false) in ®B(Bp).
Since by (b), depenp(D,;0,{cly, ... cl,}) > m, from Lemma 4.1.18 it follows that

35, D0 is true (vesp. false) in G (DR).
Now ®% C Ifp(®p:) and ®p: is monotone, then
33, D;0 is true (resp. false) in ®F,(Ifp(Pp))
But since O (Ifp(®p:)) = Ifp(Pp:), this contradicts the right hand side of (4.7) . O

Finally, from Theorems 4.2.4 and 4.2.6 we obtain the following result on the
safeness of the replacement operation.
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Corollary 4.2.7 (applicability conditions wrt Comp, UDCA with L finite)
In the hypothesis of 4.1.4, if for each C; € {C4,...,C,}, there exists a (possibly
empty) set of variables ¥; satisfying the locality property wrt C; and D, such that

A% Di Z¢omp.(pyunca, 37 C

and one of the following two conditions holds:

1. {Dy,...,D,} are all independent from the clanses in {cl, . .. el or

2. there exists an integer m such that, for each O € {(:Yh...,(:yn}? and each
ey € {cly, ... cl,}:
- the delay of 3&; D; wrt 33 C; in Ifp(®p) is less or equal to m, and
- depenp(D;,cl;) > m;

then the simultaneous replacement operation is safe, that is, P is equivalent to P’

(wrt Compe(P)UDCA,). 0

4.3 Replacement vs. other operations.

In this Section we consider the operations of thinning and fattening, and show how
they can be seen as particular cases of replacement. We introduce them by means
of an example of transformation sequence. This also give us the opportunity of
illustrating how the applicability conditions for the replacement operation can be
checked “by hand”.

For the sake of simplicity, we consider the semantics given by Comp(P) U DCA,.
The results hold also in the case we adopt Comp,(P)U WDCA, (and therefore also
for Kunen’s semantics) although the proofs are then more complicated.

Example 4.3.1 (sorting by permutation and check, part T) The following
program is borrowed from [96]. The transformation process is intentionally redundant,
in order to be more explanatory.

Let Py be the following program:

Po=1 ¢l perm([],[])-
c2: perm([A | Xs],Vs) —  perm(Xs, 7Zs),ins(A, 7s,Ys).

e oans(A, X s, [A | Xs)]).

cd: oans(A[B| Xs],[B|Ys]) « ins(A, Xs,Ys).
eh:oord([])-

c6: ord([A]).

7 ord([A, B | Xs]) — A< B,ord([B]| Xs]).
e8: sort(Xs,Ys) —  perm(Xs,Ys),ord(Ys).

}

(1) TIf we unfold perm(Xs,Ys) in the body of ¢8; the resulting program is:
Pr=A{cl,...,cT}U
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{ 9: sort([],]]) — ord([]).
cl0: sort([A] Xs],Ys) < perm(Xs, 7Zs),ins(A, 7s,Ys),ord(Ys).}

(2) By unfolding ord([]) in ¢9, we eliminate ord([]) from the body of that clause.
Py=Acl,... cTU{clO} UL eIl sort([],]])-}
By the safeness of the unfold operation (Corollary 4.7.2) Py, Py and P, are equivalent
programs both wrt Compg(P)UDCA, and Compg(P)U WDCA,. O

Fattening

The fatten operation consists in introducing redundant literals in the body of a clause.
It is generally used in order to make possible some other transformations such as

folding.

Definition 4.3.2 (fatten) Tet ¢/ : A<« . be a clause in a program P and H a
conjunction of literals.

e Fattening ¢l with H consists of substituting ¢l’ for ¢l, where ¢l’ : A « L, H.
fatten (P,e, H) < P\{cI} U {cl'}. O

The fatten operation is a special case of replacement, and then its applicability
conditions can be drawn directly from Corollaries 4.2.7 and 4.2.1.

The next Lemma shows that for fattening, part of the applicability conditions
always hold.

Lemma 4.3.3 Tet ¢l = A« FE.(. be a clause in the normal program P, & be a set
of variables not occurring in (A, f?) and H be another conjunction of literals. Then
(a) Tf for each 8, Ifp(®p) = T3 GO implies Ifp(®p) = (35 G, H)H,
then 33 (' Zcompapyunca, 37 G H.
(b) Tf for each 8, Ifp(®p) = =(3 & G, H)O implies Ifp(®p) = =33 GO
then 37 G, H =Comps(PYUDCA, 37T G.
(¢) Tf m is an integer such that, for each o and 6, ®1" = 37 (0 implies ¢+ |=
(3% G, H)O, then
- 32 G =comp(Pyunca, 3T G H,
- the delay of 37 G, H wrt 37 G in Ifp(®p) is less or equal to m.
If m is the least of such integers, then the delay of 47 G, H wrt 332G in Ifp(®p)
is exactly m.

Proof. Tt is a straightforward application of Theorem 2.3.5 together with the fact
that if GO is false in some interpretation I, then also (G, H)# is false in [. O

This Lemma applies as well to the semantics given by Compg(P)U WDCA,, as
it is shown by Lemma 4.6.1 in the Appendix B.

Example 4.3.1 (sorting by permutation and check, part IT)
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(3) Now we can fatten clause ¢10 by adding ord(7s) to its body.
Let P3 be the resulting program:
Py =A{cl,...,cT} U

{ ell: sort([],[])-
c12: sort([A| Xs],Ys) < perm(Xs,7Zs),ord(7s),ins(A, 7Zs,Ys),ord(Ys).}

This operation corresponds to a replacement of ins(A, 7s,Ys),ord(Ys) with
ord(7s), ins(A, 7Zs,Ys), ord(Ys).

We now use Theorem 4.2.6 to prove that the operation is complete.

Observe that if (ins(A, 7Zs,Ys),ord(Ys))0 is true in Ifp(®p,) then Vs is an
ordered list and 76 is a sublist of Y's0; hence also 7 s6 is ordered and (ord(7s),ins(A, 7Zs,Ys),ord(Ys
is also true in Ifp(®p,). By Lemma 4.3.3, this is sufficient to state that:

ins(A, Zs,Ys),0rd(Ys) <compapyunca, ord(Zs),ins(A, Zs,Ys), ord(Ys)>.

Moreover, the conjunction ord(7s),ins(A, 7Zs,Ys),ord(Ys) is independent from
clause ¢10, hence, by Theorem 4.2.6, the operation is Compz(P) U DCA s-complete.

To show that the operation is safe we could use Corollary 4.2.7, but in this case
it is easier to observe that [fp(®p,) is also a total model?, that is, no ground atom is
undefined in it, and therefore that Ifp(®p,) C Ifp(Pp,) implies that Ifp(®p,) = Ifp(Pp, ).
By Lemma 4.2.2 this implies that the operation is also safe.

(4) We can now fatten ¢12 with sort(Xs, Zs). The resulting program is:
Py=A{cl,...,cT}U

{ ell: sort([],[])-
cl3: sort([A] Xs],YVs) «  sort(Xs,Zs),perm(Xs, Zs),ord(7s),ins(A, Zs,Ys),ord(Ys).}

This operation corresponds to a replacement of perm/(Xs, 7s), ord(7s) with sort(Xs, 7s),
perm(Xs, 7s), ord(7s). Using Corollary 4.2.7 we can prove that the operation is safe,
in order to do it we prove that:

(a) sort(Xs, Zs),perm(Xs, Zs),ord(7s) Zcomp.(Pyyunca, perm(Xs, Zs), ord(7s);
(b) the delay of sort(Xs, Zs), perm(Xs, 7s),ord(7s) wrt perm(Xs, Zs),ord(7s)
in Ifp(®p,) is zero.

To prove (a) we proceed as follows: since sort(Xs, 7s) «+ perm(Xs, 7s),ord(7s),
is a clause of Py, by Lemma4.1.13, sort(Xs, 75) Zcomp,.(pyunca, perm(Xs, Zs), ord(7s).
This clearly implies that sort(Xs, Zs), perm(Xs, Zs),ord(7s)  Zcomp.(Po)uDCA ,

IWhen using WDCA instead of DCA| in order to establish the equivalence, computations are in
general more complicated. Tn this Example it is sufficient to observe that (ins(A, 7s,Y's), ord(Y s))f
is true in @ then also ord(7s)0 is true in &7 .

*This also follows from a result due to Apt and Bezem [5], that states that the Fitting’s Model
of an acyclic program is always a total model.
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perm(Xs, Zs),ord(7s). Moreover, by the safeness of the previous transformation

steps, Fy is equivalent to P5 and therefore, by a straightforward application of Lemma

4.2.3, we have that also (a) holds.

We now prove (h).
First, let us prove a few properties. In the following we denote the length of a list

[ by |I].

(i)

ins(A, Zs,Ys)0 becomes true at step &1 ., where n < |Vis|. In fact n is
precisely the place where A ends up in Y@

For example: ins(a,[t,s,...],[a,t,s,...]) is true in d’)g_
ins(a,[t,s,...],[t,a,s,...]) is true in q')TQ_

ins(a, [t,s,.. ], [t,s,a,..]) s 7‘7“71qu5
Moreover, when in 9(/4 75, Ys)0 is frwp in /fp(q')p%) we have that

|Ysb| = |7s0] + 1. (4.8)
perm( X s, 7s)0 becomes true in QV)LLZSQH—].
This can be proven by induction on the length of |7s6)|.
perm([],[]) is true in q’ﬁ%;

if |7s0] > 0 then perm(Xs, Zs)0 is true in q,);;, iff there exists an instance of
2,
erm([A'| X&', Ys") « perm (X&', 78" ), ins( A", 75, Y ) )
p ? p ? ? ? ? ?
such that
- perm([A’| X §'], V") = perm(Xs, 7s)0 and
- (perm( X', Zs"),ins( A", 78 Y $'))0" is true in q');;y*].
Now we can apply the inductive hypothesis and the previous results in order to

determine o — 1:
- perm( X', 7s)0" is, by the inductive hypo‘rheqm true in q')ﬂ7g o |+1,

—ans( A, 78, Y 80 becomes true at step q')Pg, where n < |Ys'¢9'|.
By (4.8), |[Y'0'| = |75'0'|+1, hence the conjunction (perm(Xs', 7s"),ins( A, 75", Y ')

becomes true exactly at step q')ﬂyslgll. But |Ys'0'| = | 70|, hence perm(X s, 7s)0

becomes true at step d’)ﬂ799|+1

ord(7s)0 becomes true at step @me( 1791)

This can be proven by induction on |7s8)|.

sort(Xs, 7s)0 becomes true at step ¢T|799|+1_

This can also be proven by induction on |7s6)|.

sort([],[]) is true in q')Tg.

When |7s0] > 0, sort(Xs, Zs)f is in qﬁ;: iff there exists an instance of ¢12:
(sort([A | X&', Ys") « perm(Xs', 75'), (()rd(Zs'), ins(A, 78 ,Ys"), ord(Ys').)
such that

- sort([A | X', V)0 = sort(Xs, 7Zs)0 and

- (perm(X &', 78", ord(7s"),ins(A, 75", Y "), ord(Ys').)0 is true in d’);;’*]
Now to determine the value of o — 1, we can use (i), (ii) and (iii):

ég%25191|+1'

b

- perm(Xs', 780" is true in
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- ord(7)0" is true in @Tmm(LlZﬁlﬁll),
-ans(A, 78, Y$)0" is true in J)P , where n < |V §'0'|;

- ord(Y )0 is true in @me( VD

Since | 780" |+1 = |Y'0'| = | 750, (pﬁrm(Xs'7 78", ord( 78", ins(A, 78 Y8, ord(Ys'))0
ol

becomes true exactly at step and sort(Xs, 7s)0 becomes true at step

| 756 +1
@’Dg -

We can finally prove (b). By (iv), whenever sort(Xs, 7s)0 is true in I[fp(®p,), it

is frue in QV)LLZSQH—]; but by (ii) and (iii), whenever (perm(Xs, 7s), ord(7s))0 is true

in Ifp(®p,), it is also true in q')gfsglﬂ.

This implies the following statement: for all 0, if (perm(Xs,Zs),ord(7s))0 is
true in some @;’:7 then also sort(Xs, 7s)0 is true in d)y:_

Clearly, this can be restated as follows: for all 0, hc((perm()(s7 7s),ord(7s))0 is
true in some q')g:, then also (sort(Xs, 7Zs), perm(Xs, Zs),ord(7s))0 is true in d’)g:_

By Lemma 4.3.3 this implies (b). 0

Thinning

The thinning operation is the converse of fattening, and allows one to eliminate su-
perfluous literals from the body of a clause.

Definition 4.3.4 (thin) Tet ¢l : A< I, H. be a clause in a program P.
e Thinning cl of the literals H consists of substituting ¢!’ for ¢l, where el’ : A L.

thin(P,cl, H) %< P\{cl} U {cI'}. 0

As for fattening, thinning can be interpreted as a replacement and then its applic-
ability conditions can be inferred from Corollaries 4.2.7 and 4.2.1. Moreover Lemma
4.3.3 applies in a natural way also to this operation; only statement (¢) requires a
symmetric formulation. We now restate only this last point.

Lemma 4.3.5 Tet ¢l = A E.G, H. be a clause in P and # be a set of variables
not occurring in (A, K). The following property holds:

e If m is an integer such that, for each o and 6, q,)g, E-(d7 G, I':I)H implies
O™ = =33 GO, then
-dz p H _<(Vomp[(P)UDOA[ dz p
- the delay of 37 G wrt 33 G, H in Ifp(®p) is smaller or equal to m.
If m is the least of such integers, then the delay of 7 G, H wet 372G in Ifp(®p)

is exactly m.

Proof. It is a straightforward application of the fact that if ((NJ, I':I)H 18 true in some
interpretation I, then also (G0 is true in [. O

In the Appendix B (LLemma 4.6.2) we state a corresponding Lemma for the case

in which we adopt Comp,(P) U WDCA . instead of Compg(P)UDCA,.
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Example 4.3.1 (sorting by permutation and check, part TIT)

(5) We can eliminate ord(7s) from the body of ¢13 by thinning it. The resulting
program is:

Ps={cl,...,cT}U

{ ell: sort([],[])-
cld: sort([A|Xs],YVs) «  sort(Xs, Zs),perm(Xs, Zs),ins(A, Zs,Ys),ord(Ys).}

This corresponds to replacing ord(7s),ins(A, 7s,Ys), ord(Y s) with ins(A, 7s,Ys), ord(Y s).
In order to prove that the operation is Comps(P) U DCA -complete, we apply The-
orem 4.2.6.

First we have to prove that

if ord(7s)0 is false in Ifp(®p,) then (ins(A, 7s,Ys),ord(Ys))0 is false in Ifp(®p,) °.

(4.9)
This is easy to prove: if ins(A, 7s,Y )0 is false in Ifp(®p,) then we have the thesis.
Otherwise, since Ifp(®p,) is a total interpretation, ins(A, Zs,Ys)d cannot be un-
defined in it, and ins(A, 7s,Ys)0 is true in Ifp(®p, ), but in this case 7s6 is a sublist
of Y0, hence if ord(7s)0 is false in Ifp(®p,), so is ord(Y s)f; and (4.9) follows. Now
(4.9) implies that whenever (ord(7s),ins(A, Zs,Ys),ord(Ys))0 is false in Ifp(®p,)
then also (ins(A, Zs,Ys),ord(Ys))0 is false in [fp(®p,), and, by Lemma 4.3.3, that

ord(7s),ms(A, 7s,Ys),0rd(Ys) =comps(Pyyunca, ms(A,7Zs,Ys), ord(Ys).

Since we also have that ins(A, Zs,Ys), ord(Ys) is independent from ¢13, from The-
orem 4.2.6 it follows that the operation is Compg(P) U DCA -complete.

As in part (3), since Ifp(®p,) is a total interpretation, Ifp(®p,) D Ifp(Pp.) implies
that Ifp(®p,) = Ifp(®Pp.). In other words, the completeness of the operation implies
its safeness (wrt Compg(P)UDCA,).

(6) Finally we can eliminate perm(Xs, Zs) from the body of ¢14 by a further
thinning, thus obtaining:
Ps={cl,...,cT} U

{ ell: sort([],[])-
clb: sort([A|Xs],YVs) «  sort(Xs,7s),ins(A, Zs,Ys),ord(Ys).}

"When adopting WDCA instead of DCA, calculations are truly more complicated. Tn fact in
order to ensure the equivalence, we have to show that for each j there is a k such that if ord(7s)f
is false in @Iji then (ins(A, 7s,Vs), ord(Ys))0 is false in @Lﬁ.

This can be proved by the following schema: suppose that ord(7Zs)8 is false in Ifp(®p,) and let

Ws8 be the maximal ordered prefix of Zs8, then ord(7s)8 becomes false at step <T>I3|4WSH|. We have
to distinguish two cases:

- if there is no X'sf such that X sf is a prefix of Vs and ins(A, Ws, X s)f is true in some @Lj, then
ins(A, 7s,Y s)f becomes false no later than ord(7s)f does, and we have the desired result.

- otherwise, either X,# is not ordered or it 1s the maximal ordered prefix of Ys#; in either cases,

ord(Y s)6 becomes false no later than step @gfsgl.

Tn any case if ord(7s)6 is false in @Iji then (ins(A, 7s,Vs), ord(Ys))f is false in <T>L'Z+1.
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This is an O(n?) sorting program, while Py runs in O(n!).
To prove the Compg(P)U DCA -completeness of this last step, we use Theorem
4.2.6. Let us distinguish two cases.

o If Xsf =[], then perm(Xs, 7s)0 is false in q')gr) iff 750 =+ [], but in this case

also sort(Xs, 7s)0 is false in q')gr);

e otherwise observe that the bodyxof c2, which defines perm, is contained in the
body of ¢14, defining sort. This implies that if some instance of body(c2) is false
in some interpretation I, then the corresponding instance of body(cl14) is false
in 1. Hence, if perm([A|Xs], 7s)0 is false in ®p (1) then sort([A|Xs], 7s)0 is
false in ®p_(T1).

It follows that
if (sort(Xs, 7Zs), perm(Xs, 7s))0 is false in q');'i then sort(Xs, 7s)0 is false in q');i.

By Lemma 4.3.5, this is sufficient to show that sort(Xs, Zs), perm(X s, 75) =compa(Ps) uDCA
sort(X s, 7 s) and that the semantic delay of sort(Xs, 7s), perm(Xs, Zs) wrt sort(Xs, 7s)
is zero, and hence, by Theorem 4.2.6, the operation is Compg(P) U DCA c-complete.
On the other hand, if sort(Xs, Zs)0 is true in some interpretation 7, then 7sf
must be a reordering of Xs6, therefore perm(Xs, 7s)0 is also true in I. Tt follows
that

if sort(Xs, 7s)0 is true in Ifp(®p,) then also (sort(Xs, 7s), perm(Xs, 7s))0 is true
in ]fp(qua>

By Lemma 4.3.3, this implies that sort(Xs, 7s) =<compa(P)unca, sort(Xs, Zs), perm(Xs, Zs),
and hence, by Theorem 4.2.4, that the operation is also Comps(P) U DCA s-partially
correct. O

4.4 Conclusions

In this chapter we study the simultaneous replacement operation for normal logic
programs. Simultaneous replacement is a transformation operation which consists
in substituting a set of conjunctions of literals {(:H,...jén} in the bodies of some
clauses, with a set of equivalent conjunctions {f)17 cee f)n} The set of logical con-
sequences of the program’s completion is considered as the semantics of the normal
program. In this way we obtain three different semantics which depend on the do-
main closure axioms and on the finiteness properties of the language we choose. More
precisely, the semantics we consider are:

o Compe(P).
where L is an infinite language, this corresponds to Kunen’s semantics.

o Compe(P)UWDCA,,
where L is a finite language, namely it has a finite number of function symbols,
and WDCA is the set of Weak Domain Closure Axioms.

o Compe(P)UDCAL,

where L is a finite language and DCA is the set of Domain Closure Axioms.
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All these semantics can be characterized by means of the Kleene sequence of the three
valued immediate consequence operator ®p.

For each of these semantics we define and characterize formulas equivalence, pro-
grams equivalence and safeness of program transformations, namely their correctness
and completeness, and express them in terms of the ®p operator.

Furthermore, we propose applicability conditions for simultaneous replacement
which guarantee safeness, that is the preservation of each semantics during the trans-
formation. The equivalence between C; and D; is obviously necessary but it is
generally not sufficient. In fact, as it is shown by Corollary 4.1.9, we also need the
equivalence to hold after the transformation. Such equivalence can be destroyed when
a D; depends on one of the clauses on which the replacement is performed. Hence we
establish a relation between the level of dependency of {f)1 R, ]5”} over the mod-
ified clauses and the difference in “semantic complexity” between each C; and D;.
Such semantic complexity is measured by counting the number of the applications of
the immediate consequence operator which are necessary in order to determine the
truth or falsity of a predicate.

By considering replacement as a generalization of other transformation opera-
tions such as thinning, fattening and reversible folding, we show how applicability
conditions can be used also for them.

4.5 Appendix A.

Proof of Lemma 4.1.6

Lemma 4.1.6 Let P be a normal program, y and ¢ be first order allowed formulas
and & = {xq,..., 21} = FV(x) U FV(®). The following statements are equivalent

(a) x =Compe(P) P ) )
(b) Yn Im Vi OF = (=)y(i/7) implies OF" = (=)o(i/7);

where n, m are quantified over natural numbers and # is quantified over k-tuples of
L-terms.

Proof. (a) implies (b)
This part is by contradiction. et us assume there exists a fired n, such that for each
integer m there exists a k-uple of L-terms £, for which the following hold

(i) OF = (<)x(in/):
(i) O3 B ()6 (i /).

By Lemma 2.4.1 there exist two formulas 7" and F in the language of equality,

such that FV(T?) = FV(F]) = FV(x) and
QL EYE(T) = x A FI — =)
By Theorem 2.2.1

Compe(P) EVZ(T] = x N F = —x).
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By (a),
Compe(P) EVZ(T] = ¢ AN F] — =0).

This is an allowed formula, then by Theorem 2.2.1 there exists an r such that
L VI (TN > A FI— =), (4.10)

But by (i) x(#./%) is either true or false in @;”'7 let s now consider just the first
possibility, that is

tn S
o = (/)
the other case is perfectly symmetrical and omitted here.
From this and the definition of 777 in Lemma 2.4.1, we have ol Tr(t,./7), and
since T;(ﬂ,) is a formula in the language of equality, if it is true in q');n it must be
true already at stage 0, that is q');jo = T;(ﬂ,/"i’), but q');jo C q')y, hence

oL =TI, /7).
But then, by (4.10), qa}; = &(1,/7), contradicting (ii).
(b) implies (a)

We prove that for each n there exists an m such that for any allowed formula (, and
for any substitution o,

O = Co implies " = ([o/]o. (4.11)

By Theorem 2.2.1 this implies (a).
Fix an n, and let m be an integer that satisfies hypothesis (b). Tt is not restrictive
to assume that m > n. Let ( be an allowed formula and ¢ a substitution such that

ol |= Co.

If ¢ does not contain y as a subformula then (4.11) follows immediately from the
assumption that m > n. In the case that ( contains y as a subformula we proceed
by induction on the structure of (.

Base step: ¢ = x, then (4.11) follows immediately from (b).

Induction step: we consider three cases:

1) If ¢ = A ¢, where A is any allowed unary connective, or ( = (3 & (s, where
<& is any allowed binary connective, then we have that either (; does not contain y
as a subformula (and the result holds trivially) or the inductive hypothesis applies.

2) (=VYw (.
For each L-term ¢, let v, be the substitution [t/w]. Since ®5 |= Co, we have that

for each L-term £, ®L" = ¢y0.
By the inductive hypothesis there exists an m such that
for each L-term ¢, ®L" = ¢ [/ x]no.
Since the underlying universe of q');m is the Herbrand universe on £, this implies that

OF E (Y Gilo/x])o
3) Finally, the case ( = Fw (i(w), is treated as =V w = (w). 0
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Proof of Lemma 4.1.8

et us first state a simple property of existentially quantified formulas.

Remark 4.5.1 Let £ be any langnage, w and Z be sets of variables, I be a con-
junction of literals, I a three valued L-interpretation and # any ground substitution.
Suppose that @ 2 2N Var(L). The following properties hold:

o [fd2 ZAQ is true in I then 31w 1.0 is true in 1.
e If 42 LO is not false in I then 4w L0 is not false in [.

This is true in particular when Z is empty and 32 L0 = L4. O

Lemma 4.1.8 Notation as in Theorem 4.1.7. Tet I, I’ be two partial interpretations.
If 1" C Tbut ®pi(1') L ®p(7), then there exist a conjunction C; € {C4,...,C,} and
a ground substitution # such that:

o cither I |=3%; D;0 while I [+ 35, C;0;
® Or [I |: _'3 ”7‘7 D7¢9 Wh]]@ [ I# _'3 ”7‘7 079

Proof. Recall that ®p/(1I") € ®p(T) iff either ®p:/(1)t  Op(I)T or Gp(l')” £
Gp(1)” (or both). We have to distinguish the two cases.

Case 1) Let us suppose that ®p/(I')T € ®p(7)T and let us take an atom B €
Gp (I)P\®p(I)*. There has to be a clause ¢ € P\ P, a ground substitution & such
that: head(c)0’ = B and body ()0 is true in I’

P:\P = {0!17 .. Ld;}’ then there is an integer j such that: ¢ = ¢/’ and body(cl’.)0" =

(D D . FEN0 . s true in I

FIR R I S
Hence the conjunctions D ¢',.... D; 0" are all {rue in I'. From Remark 4.5.1 it

follows that the formulas:

35, D0, .., Tiven Pivey 0" are truein I, (4.12)

where the #; are sets of variables that satisfy the locality property wrt to C; and D;.
We know that B = head(cl’)0" = head(cl;)0', but since B ¢ ®p(1)*, by definition

2.1.6 we have that (Fwbody(cl;))0" is not truein I, where o = Var(body(cl;))\Var(head(cl;)),
that is, (3@ C5, ..., (:er(]V E:)0" is not true in I.

For each k, w 2 &, NVar(body(cl;)), now let g = w\z; U ... Uz,  and 0 be a

ground extension of #" whose domain contains . Then from Remark 4.5.1 it follows

that

(3.77'7‘”...7.77‘ 0'7‘”...707‘

i (i) ivy» 195)0 s not truein 1.

Since ]:7'7'9 is true in I" and I’ C [, then ]:7'7'9 is true in [, by the locality property, the

0,.... 3¢, C;..0

sets 7;, are pairwise disjoint, hence one of the formulasin 32, C )

n
is not truein [I.
Since (4.12) holds also for 6, the thesis follows.

Case 2) It is perfectly symmetrical to case 1) except for the fact that it is proven
by contradiction. Let us suppose that ®p/(I')~ € ®p(1)~, and let us take an atom
B € ®p(I"y"\®p(l)". There has to be a clause ¢ € P\ P’ a ground substitution ¢’
such that head(c)f = B and body(c)#’ is not false in 1.
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P\P' = {cly,....cl,}, then there is an integer 7 such that: ¢ = ¢l;, and then the
9 9 P g J 7
)0 is not false in [.

0" are all not false in I. From Remark 4.5.1

conjunction (C ..., Cj

Hence the conjunctions (:Ym o,...,C;
it follows that:

(1)

EES (jﬁ o, .. .3 T (:er(])ﬂl are not false in I. (4.13)

We know that B = head(cl;)0" = head(cl’)8, but since B € ®p/(I')”, by definition
2.1.6 we have that (Fwbody(cl}))0" is falsein I', with @ = Var(body(cl’))\Var(head(cl})),

that is, (3w D, ..., Di. s E)0"is false in T'. For each k, i D &, 0 Var(body(cl,)),
now let g = w\#;, U ... Uz, . and # be a ground extension of §" whose domain

contains . From Remark 4.5.1 it follows that

D

Jr

(3Fs, o d D,

Ir(4) FIERER)

0y ﬁj)ﬂ is false in I'.

Since ]:7'7'9 isnot falsein I'and I' C 1, ]:7'7'9 is not falsein I'. By the locality property,

-4 57.7}(‘7) D.i 0

the sets 7, are pairwise disjoint, then one of the formulasin 32, D )

7
is false in I,

Since (4.13) holds also for 6, the thesis follows. 0

Proof of Lemma 4.2.3

Lemma 4.2.3 et x, ¢ be first order allowed formulas and P be a normal program.
The following statements are equivalent:

(a) X =Compa(PyuDCA, ©;
(b) Ufp(®r) = x = o.
Proof.
(a) implies (b).
By the definition of the operator = | (b) is equivalent to
for each tuple of L-terms 1, Ifp(®p) = (=)x(#/3) implies Ifp(®p:) = (=)d(1/F).
By Theorem 2.3.5 this is equivalent to
for each tuple of L-terms, Comps(P)UDCA, |= (=) x(1/3) implies Comps(P)UDCA, |=
()65,
This is immediate by Definition 4.1.2.
(b) implies (a).
Let ¢ be any allowed formula such that Comp:(P)UDCA; | (, o be any ground
substitution; we have to prove that Comp:(P)UDCA, | ([oc/xo].
If ¢ does not contain yo as a subformula then the result holds trivially, so let us
suppose that ( contains yo as a subformula. The proof proceeds by induction on the
structure of (.
Base step: ¢ = xo. By Theorem 2.3.5, Comp(P)UDCA, | yo implies that
p(®) o
By (b) this implies that Ifp(®p) | ¢o, and, by Theorem 2.3.5, that Comp(P)UDCA, E

oo
Since ¢po = ([po/xa], this implies the thesis.
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Induction step: we have to consider four cases:

1) ¢ = A ¢, where A is any allowed unary connective. The result holds
trivially, since by the inductive hypothesis, Comps(P)UDCA, | (=)¢ implies
Compc(P)UDCAL | (7)o /xal.

2) ( = (i © (3, where & is any allowed binary connective. For i € {1,2}, either
(; does not contain an instance of y as a subformula, in which case the result holds
trivially, or the inductive hypothesis applies to (.

3) ( =VYw (i (w).

Suppose that Comps(P)UDCA, = Yw (i (w).

This is equivalent to: for any L-term 1, Comps(P)UDCA, E ().

For each L-term ¢, let v; be the substitution (#/w), by the inductive hypothesis, we
have that for any L-term ¢, Comp(P)UDCA; E G(D)][ooy:/ o).

Since DCA forces the quantification to be over L-terms, and DCA . is included in
Compe(P)UDCA,, this implies that Comps(P)UDCA, EVw ((w)[oo/xal.
On the other hand, for the case when Comp(P)UDCA, | =Vw (i(w), a similar
reasoning applies.

4) (= Fw (i (w)

This falls into the previous case, since Jw (i (w) = =V w = (w). O

4.6 Appendix B

Now we state two Lemmata which are the counterpart of LLemmata 4.3.3 and 4.3.5,
for the case in which the closure axioms adopted are WDCA ; rather than DCA .

Lemma 4.6.1 Tet ¢l = A« FE.(. be a clause in the normal program P, & be a set
of variables not occurring in (A, /) and H be another conjunction of literals. Then

(a) If for each j there exists a k such that, for each 0, d)y = 33 GO implies
O = (33 G, H), then 35 G <pmpypy 33 G, H. | o

b) Tf for each j there exists a k such that, for each 8, ®¥ = =(37 G, H)H implies

( ) J N v ” RG] P ” p
O | -35 GO, then 33 GLH <pom,ppy 37 G )

(c) Tfm is an integer such that, for each n and 0, O =, 35 GO implies O™ =,
(32 G, H)f then o
- 37‘ G j(jompﬁ(}?) 37‘ G7 H,
- the delay of 33 G, H wrt 33 G in Compe(P)UWDCA, is smaller or equal

to m.
If m is the least of such integers, then the delay of 4% G, H wrt 37

2

7 in

Compe(P)UWDCA, is exactly m.
Proof. Tt is a straightforward application of Theorem 2.3.3 together with the fact
that, if GO is false in some interpretation I, then also (G, H) is false in [. O

Lemma 4.6.2 Tet ¢l = A+ E,G, H. be a clause in P and 7 be a set of variables
not occurring in A, K. The following property holds:
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o If m is an integer such that, for each integer n and substitution 4, 4% ((NJ, I':I)H
false in @ implies 33 GO false in @™ then
S35 G H Zeompepy 37 G,
- the delay of 35 G wrt 37 G, I in q');w is less or equal to m.
If m is the least of such integers, then the delay of 4% G, H wrt 37 G in q');w 1S
exactly m.

Proof. It is a straightforward application of the fact that if ((NJ, I':I)H 18 true in some
interpretation I, then also (G0 is true in [. O

4.7 Appendix C (Safeness of the Unfolding Opera-
tion)
First we need the following technical Lemma.

Lemma 4.7.1 Let P’ be the program obtained by unfolding an atom in a clause of
program P. Then for each integer 2 and limit ordinal [3,

(2) qjg QT(E% an dTBE, <o 1 (BT i pth

(b) @p(®p)) C Pp(Pp) and  Pp (Ppr) C Op'(Dp).

Proof. Here we adopt the same notation of definition 3.2.3,s0 ¢/ : A« H, K. is the
clause of P to which we apply the unfold operation, { H; + Bi...., H, — éﬂ} are
the clauses of P whose heads unify with H, {cl},... ¢l } are the resulting clauses,
where, for each i, ¢l’ : (A« B;, K)0;. and 6; = mgu(H, H;). We also suppose that
all this clauses are disjoint.

The next Claim is crucial

Claim 4.1 Suppose that «a is an ordinal such that, for each ground r,
(i) OF" = &};
(i) if Hr € q,)gﬁ then there exist a substitution ¢ and an integer 7 such that
Hr = H;0;¢ and éﬂiqb is true in q,)g,;
(iii) if Hr € q')gr then for each substitution ¢ and integer 7 if Hr = H,0;¢ then
B0;¢ is false in q')gy.
Then, for each integer 7,
o OL(DF) C OU(O);
¢ OR(DL) C OPI(O]).
Proof. First we prove the first statement, and we show by induction that if a ground
atom R is true or false in ®(®%") then it is also so in & (B,
The base case j = () is trivial, since q')g)(q')gy) — 17, and from (i) we have the thesis.
Induction step, 7 > 0; we have to distinguish two cases:
1) Suppose R is true in q')y(q')gy); then there exists a clause d € P and a substi-
tution 6 such that R = head(d)0 and body(d)0 is true in ®H (&1
If d # ¢l then d belongs both to P and P’, by the inductive hypothesis body(d)0 is
true in q')yf] (@;(7)7 and the result follows.
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Otherwise, d = ¢l, R = A# and (H,K)0 is true in q')yq(q')gy). So HO is true in
Oy (PF).

If 7 > 1 this implies that for some integer ¢ and substitution ¢, H = Hb,¢ = H,;0,¢
and B;0,¢ is true in & (0.

On the other hand, if j = 1 the fact that H0 is true in q,)g, implies, by (ii), that for
some integer 7 and some substitution ¢, B0, is true in q')gy.

Tn any case, (Bi, K);¢ is true in ol (q,)g,) and, by inductive hypothesis, in q')yf1 (q')gf).
Then body(cll)o is true in q')yf] (@;(7)7 it follows that, head(cl)d is true in d’)?ﬁ,(d’ﬁﬁ).
We can assume that 0|v,, ) = 0:0|var(q), and hence that A0 = Af;¢.

As R = A0 = Ab;¢ = head(cl}) ¢, the result follows.

2) Suppose that R is false in q')y(q')gy), we prove this part by contradiction.We
assume that R is not false in d')y,(d')gf); then there exists a clause d’ € P’ and a
substitution # such that R = head(d")0 and body(d’)0 is not false in q')yf] (q')gf).
Ifd & {cl|,....cl }, then d" belongs both to P’ and P, by the inductive hypothesis
body(d")f is not false in q)y,](q,)g,)’ and R = head(d')0 is not false in q')y(q')gy)7
which is a contradiction.

Otherwise, for some integer 7 and substitution ¢, &’ = ¢li, R = head(cl))¢ = Ab;0,
and body(cl’)¢ is not false in q')yf1 (q')gf). Recall that body(cl’)p = (B, K)8;¢.

If j > 1, the fact that B;0;¢ is not false in q')yf1 (dﬁ;f) implies that B;0;¢ is not false
in q)yf?(q')gf)? and since H; < B,. is a clause of P', Hb;¢ = H;0;¢ is not false in
ol (@l

On the other hand, if j = 1, the fact that B;#;¢ is not false in q')gf implies by (ii) that
HO;é is not false in &1

In any case (H, R’)Hiqb is not false in q')yf1 (@;(7)7 and by the inductive hypothesis, in
q)y,](q)g,). Since H, K = body(cl) it follows that R = A6;¢ = head(cl)0;¢ is not
false in q')y(q')gy), which gives a contradiction.

Now we prove the second statement: we show by induction that if a ground atom
R is true or false in ®H,(®5) then it is also so in @57 (GL).
As above, the base case 7 = 0 is trivial.
Induction step 7 > 0: we have to distinguish two cases.

1) Suppose that R is true in d')y,(d')gf)j then there exists a clause d’ € P’ and a
substitution § such that R = head(d")0 and body(d")0 is true in q')y,q(q')gf).
Ifd & {cly,....cl } then d belongs both to P’ and P, by the inductive hypothesis
body(d")0 is true in q')y*](q')gy), R = head(d)0 is true in q')y(q')gy) and the result
follows.
Otherwise for some integer 7 and substitution ¢, ' = ¢ll, R = head(cll)o = A0,
and body(cli)¢ is true in q')yf](q')gf).
Recall that body(cl))p = (Bi, K)8;¢; by inductive hypothesis, (B;, K)8;¢ is also true
in O (1.
Since éﬂiqb 1s frue in @;2'772(6;3“) and H; « l% is a clause of P, H;0;¢ is true in
@;2'771(6;3”). But H;0;¢ = HO,¢, so (H, R’)Hiqb = body(cl)0;¢ is true in @;2'771(6;3”)7
hence R = Al;¢p = head(cl)0;6 is true in ®57 (1),

2) Let R be false in d')y,(d')gf); we prove this part by contradiction, so we assume
that R is not false in ®57(®L). Then there exists a clanse d € P and a substitution
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0 such that R = head(d)0 and body(d)0 is not false in @;2'771(6;3”).

If d # ¢l then d belongs both to P and P’, by the monotonicity of the Kleene sequence,
body(d)f is not falsein @;2'772(6;3“) either, hence, by the inductive hypothesis body(d)6
is not false in ®5, " (®). Tt follows that head(d)d = R is not false in ®,(®%) which
gives a contradiction.

Otherwise, d = ¢, R = Af# and (H, R’)H is not false in @;2'771(6;3”). So HO is
not. false in @;2'771(6;3”). This implies that for some integer 7 and substitution ¢,
HO = Hb;¢p = H;0;p and B0 is not. false in &7 (d1).

Hence (]-N?i, R’)Hiqb is not false in @;2'772(q5;a)7 and by the inductive hypothesis, in
OLET(®L)). Since Bifid = body(cl))¢, this implies that head(cl))p = Afid = R is
not false in d')y,(d')gf) which is a contradiction. O

Now, in order to prove (a) we observe that @ = 0 is an ordinal that trivially
satisfies the hypothesis of Claim 4.1.

In order to prove (b) we have to show that Claim 4.1 also applies when « is any
limit ordinal.
First consider the case o = w. From (a) it follows that q');w = q');uf, moreover, if Hr
is true (resp. false) in q');w7 then, it is also frue in some q');m, (m < w). By applying
the definition of Fitting’s operator we have that condition (i) (resp. (iii)) hold for
o =w. So a = w satisfies the requirements of Claim 4.1.
It follows that, for each 1, q');wﬁ C d)}“,’“ and that q');“fﬁ C q');w_%. By the same
reasoning it turns out that the ordinal 2w, and iterating, all the other limit ordinals,
satisfy the requirements of Claim 4.1. O

This brings us to the desired conclusions.

Corollary 4.7.2 (safeness of the unfolding operation) l.et P’ be the result of
unfolding an atom of a clause in P. Then P is equivalent to P’ wrt all three the
semantics considered in this paper.

Proof. By Lemmata 4.7.1, 4.2.2 and Theorems 2.3.3 and 2.2.3. O






Chapter 5

Preservation of Fitting’s
Semantics in Unfold /Fold Transformations of
Normal Programs

The unfold/fold transformation system defined by Tamaki and Sato was meant for
definite programs. It transforms a program into an equivalent one in the sense of
both the least Herbrand model semantics and the Computed Answer Substitution
semantics. Seki extended the method to normal programs and specialized it in order
to preserve also the finite failure set. The resulting system is correct wrt nearly
all the declarative semantics for normal programs. An exception is Fitting’s model
semantics. In this chapter we consider a slight variation of Seki’s method and we
study its correctness wrt Fitting’s semantics. We define an applicability condition
for the fold operation and we show that it ensures the preservation of the considered
semantics through the transformation.

5.1 Introduction

The unfold/fold transformation rules were introduced by Burstall and Darlington
[25] for transforming clear, simple functional programs into equivalent, more efficient
ones. The rules were early adapted to the field of logic programs both for program
synthesis [30, 50] and for program specialization and optimization [1, 60]. Soon later,
Tamaki and Sato [96] proposed an elegant framework for the transformation of logic
programs based on unfold /fold rules.

The major requirement of a transformation system is its correctness: it should
transform a program into an equivalent one. Tamaki and Sato’s system was originally
designed for definite programs and in this context a natural equivalence on programs
is the one induced by the least Herbrand model semantics. In [96] it was shown
that the system preserves such a semantics. Afterward, the system was proven to be
correct wrt many other semantics: the computed answer substitution semantics [58],
the Perfect model semantics [91], the Well-Founded semantics [92] and the Stable
model semantics [90, 12].

71
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In [91], Seki modified the method by restricting its applicability conditions. The
system so defined enjoys all the semantic properties of Tamaki-Sato’s, moreover, it
preserves the finite failure set of the original program [89] and it is correct wrt Kunen’s
semantics [88].

However, neither Tamaki-Sato’s, nor Seki’s system preserve the Fitting model
semantics.

In this chapter we consider a transformation schema which is similar yet slightly
more restrictive to the one introduced by Seki [91] for normal programs and reported
in definition 3.2.8. We study the effect of the transformation on the Fitting’s semantics
[41] and we individuate a sufficient condition for its preservation.

The difference between the method we propose and the one of Seki consists in the
fact that here the operations have to be performed in a precise order. We believe
that this order corresponds to the “natural” order in which the operations are usually
carried out within a transformation sequence, and therefore that the restriction we
impose is actually rather mild.

The structure of this chapter is the following. In Section 5.2 the transformation
schema is defined and exemplified, and the applicability conditions for the fold oper-
ation are presented and discussed. Finally, in Section 5.3, we prove the correctness
of the unfold/fold transformation wrt Fitting’s semantics. For the notation and the
preliminaries on Fitting’s semantics we refer to section 2.3.2.

5.2 A four step transformation schema

In this section we introduce the unfold/fold transformation schema. All definitions
are given modulo reordering of the bodies of the clauses and standardization apart is
always assumed.

Let P be a normal program. A four step transformation schema starting in the
program P consists of the following steps:

Step 1. Introduction of new definitions

We add to the program P the set of clauses Dy = {¢; : H; + ]%}, where the
predicate symbol of each H; is new, that is, it does not occur in P. On the other
hand, we require that the predicate symbols found in each B; are defined in P, and
therefore are not new. The result of this operation is then

o P = PU Dger 0

Example 5.2.1 (min-max, part 1) Let P be the following program
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P={ mn([X], X).
7([X|X9] Y)

4

min(Xs, Z),inf(X, 7,Y).

maz([X], X).
max([X|Xs],Y) «— max(Xs, 7),sup(X,7Z,Y).
inf(X, Y, X) — X<V
inf(X, YY) «— (X <Y).
sup( X, YY) — X<V
sup( X, Y, X) «— (X <Y).
cr: med(Xs,Med)  +—  min(Xs, Min),

max(Xs, Max),
Med is (Min + Max)/2. 1

here med(X s, Med) reports in Med the average between the minimum and the max-
imum of the values in the list Xs.

We may notice that the definition of med(Xs, Med) traverses the list Xs twice.
This is obviously a source of inefficiency. In order to fix this problem via an un-
fold/fold transformation, we first have to introduce a new predicate minmaz. Let us
then add to program P the following new definition:

Daet = {ca 2 minmax(Xs, Min, Max) < min(Xs, Min), max(Xs, Max). } 0

Step 2. Unfolding in D4

We transform Dger into Dy by unfolding some of its clauses. The clauses of P are
therefore used as unfolding clauses. This process can be iterated several times and
usually ends when all the clauses that we want to fold have been obtained; the result
of this operation is

.PQZPUDImf i

Example 5.2.1 (min-max, part 2). We can now unfold the atom min(Xs, Min)
in the body of ¢, the result is

ez : manmax([X], X, Max)
cq: minmax([X|Xs], Min, Max)

max([X], Mazx).
min(Xs,Y),
777f(X, Y7 M7n)7
max([X|Xs], Mazx).

<
<

In the bodies of both clauses we can then unfold predicate maz. Each clause gener-
ates two clauses.
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Cs T MINTMAT

Cq T MINTMAT

max([ ], 7), sup(Z, X, Max).

% b
X1, Min, X) — min([],Y),mf(X,Y, Min).
— min(Xs,Y),
inf(X,Y, Min),
max(Xs,7),
sup( X, 7, Max).

Cr T MINTMAT

e S N

Cs T MINTMAT

Clauses ¢ and ¢7 can then be eliminated by unfolding respectively the atoms max([], /)
and min([ ], Y). Dunr consists then of the following clauses.

cs: minmax([X], X, X).

cs : minmax([X|Xs], Min, Maz) <+ min(Xs,Y),
inf(X,Y, Min),
max(Xs,7),
sup( X, 7, Max).

Still, minmax traverses the list Xs twice; but now we can apply a recursive folding
operation. 0O

Step 3. Recursive folding

let ¢; : H;, « ]% be one of the clauses of Dy, which was introduced in Step 7. and

cl: A« ]—N?', S. he (a renaming of ) a clause in D, If there exists a substitution 6,
Dom(0) = Var(e;) such that

(a) B’ = B.0; ) )
(b) 0 does not bind the local variables of ¢;, that is for any @,y € Var(B;)\Var(H,)
the following three conditions hold

e 1 is a variable; )
e 26 does not appear in A, S, H,0,
o if v #£ y then 20 # yb,

(¢) ¢ is the only c]a,uie of Dger whose head unifies with H.0;
(d) all the literals of B’ are the result of a previous unfolding.

then we can fold H;0 in ¢l, obtaining ¢l’ : A<+ H.0, 5. This operation can be per-
formed on several conjunctions simultaneously, even on the same clause. The result
is that D¢ 1s transformed into D9 and hence

o P = PU Diya 0

Example 5.2.1 (min-max, part 3). We can now fold min(Xs, V), max(Xs,7)
in the body of ¢g. The resulting program Di,q consists of the following clauses

cs: minmax([X], X, X).

co : minmax([X|Xs], Min, Maz) <+  minmax(Xs,Y,7),
inf(X,Y, Min),
sup( X, 7, Max).
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minmax(X s, Min, Max) has now a recursive definition and needs to traverse the list
Xs only once. In order to let the definition of med enjoy of this improvement, we
need to propagate predicate minmax inside its body. O

Step 4. Propagation folding

Technically, the difference between this step and the previous one is that now the
folded clause comes form the original program P. This allows us to drop condition
(d) of the folding operation.

Tet ¢; : H; < B; be one of the clauses of Daer, which was introduced in Step 1,
and ¢l : A« B, 5. be (a renaming of) a clause in the original program P. If there
exists a substitution 6, Dom(0) = Var(e¢;) such that the conditions (a), (b) and (c)
defined above are satisfied, then we can fold H;0 in ¢l, obtaining ¢l’ : A« H.0, 5.
Also this operation can be performed on several conjunctions simultaneously, even
on the same clause. The result is that P is transformed into Pr,1q and therefore

o Py = PoaU Did 0

Example 5.2.1 (min-max, part 4). We can now fold min(Xs, V), max(Xs, /)
in the body of ¢, in the original program P. The resulting program is

Prola = P\{e1} U{cio: med(Xs) +  minmax(Xs, Min, Max),
Med is (Min + Max)/2.  }

And then the final program is Py = Prgq U Diolg =

={ ¢ : minmax([X], X, X).
co: minmax([X|Xs], Min, Mazx) + minmax(Xs,Y,7),
inf(X,Y, Min),
sup( X, 7, Max).

cro: med(Xs) —  minmax(Xs, Min, Max),
Med is (Min + Max)/2.

+ definitions for predicates min, max,inf and sup.}

Notice also that predicates min and max are no longer used by the program. 0O

Semantic considerations

The schema (that is, the method we propose) is similar but more restrictive than the
transformation sequence with modified folding' proposed by Seki [91]. The (only)
limitation consists in the fact that the schema requires the operations to be performed
in fixed order: for instance it does not allow a propagation folding to take place before
a recursive folding. We believe that in practice this is not a bothering restriction, as it
corresponds to the “natural” procedure that is followed in the process of transforming

There we are adopting Seki’s notation, and we call modified folding the one presented in [89, 91],
which preserves the finite failure set, as opposed to the one introduced by Tamaki and Sato in [96],
which does not.
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a program. In fact, in all the papers we cite, all the examples that can be reduced to
a transformation sequence as in [91], can also be reduced to the given transformation
schema.

Since the schema can be seen as a particular case of the transformation sequence,
it enjoys all its properties, among them, it preserves the following semantics of the
initial program: the success set [96], the computed answer substitution set [58], the
finite failure set [91], the Perfect model semantics for stratified programs [91], the
Well-Founded semantics [92], the Stable model semantics [90, 12].

However, as it is, the schema suffers of the same problems of the sequence, i.e.,
Fitting’s Models is not preserved. This is shown by the following example.

Example 5.2.2 et P = P U Dy, where P and Dyer are the following programs

Daet =1{ p “ q(X). }
P { a(s(X)) < q(X),4(0).

£(0). }
As we fix a language £ that contains the constant 0 and the function s/1, we have
that 3X ¢(X) is false in Fit(P), consequently, p is also false in Fit(P). Now let us

unfold ¢(X) in the body of the clause in Dger; the resulting program is the following.
Py = P U D, where

lmf { p — q(Y)77L(0) }
P ={ als(X)) < q(X),1(0).
£(0)- }
We can now fold ¢(V) in the body of the clause of Dy, the resulting program is
P3 =PU Df0|d7 where

Dfold :{ P

«  p,t(0). }
P ={ a(s(X)) < q(X),1(0).
£(0)- }
Now we have that p is undefined in the Fitting model of Ps. O

So, in order for the transformation to preserve Fitting’s model of the original
program, we need some further applicability conditions. Therefore the following.

Theorem 5.2.3 (Correctness) Let P;,..., P, be a sequence of programs obtained
applying the transformation schema to program P. let also Dy = {H; <+ ]—NZ} be
the set of clauses introduced in Step 1, and, for each 7, w; be the set of local variables
of ¢;: w; = Var(B)\Var(H;). Tf each ¢; in Dqer qahqﬁeq the following condition:

A each time that T, B;# is false in some q');?, then there exists a non-limit ordinal

o < 3 such that T, B;# is false in d)g’
Then Fit(Py) = Fit(Py) = Fit(Ps) = Fut(Py).

Proof. The proof is given in the subsequent Section 5.3. O
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On condition A

Condition A is in general undecidable, it is therefore important to provide some
other decidable sufficient conditions. For this, in the rest of this Section, we adopt
the following notation:

- Dot =42 H; ]—MZ} is the set of clauses introduced in Step 1,
and, for each 1,

- = Var(l%)\Var(Hi) is the set of local variables of ¢;.

First, it is easy to check that if ¢; has no local variables, then it satisfies A.
Proposition 5.2.4 If w; = () then ¢; satisfies A.

Proof. It follows at once from the definition of Fitting’s operator. O

This condition, though simple, is met by most of the examples found in the liter-
ature; if we are allowed an informal “statistics”, of all the papers cited in our bibli-
ography, seven contain practical examples in clausal form which can be assimilated
to our method ([21, 58, 78, 89, 91, 92, 96]), and of them, only two contain examples
where the “introduced” clause contains local variables ([58, 78]). Our Example 5.2.1
satisfies the condition as well.

Nevertheless Proposition 5.2.4 can easily be improved. First let us consider the

following Example?.

Example 5.2.5 et P = P U Dy, where P and Dyer are the following programs

Daet =9 co: br(X)Y) — reach(X,7),reach(Y, 7). }
P { reach(X,Y) + arc(X,Y).
reach(X,Y) « arc(X,7),reach(Z,Y). YU DB

Where DB is any set of ground unit clauses defining predicate arc. reach(X,Y) holds
iff there exists a path starting from node X and ending in node Y, while br(X,Y)
holds iff there exists a node 7 which is reachable both from node X and node Y. O

In this Example the definition of predicate br can be specialized and made recurs-
ive via an unfold/fold transformation. Despite the fact that clause ¢q contains the
local variable 7. it is easy to see that A is satisfied. This is due to the fact that P is
actually a DATALOG (function-free) program.

We now show that if (a part of) the original program P is function-free (or
recursion-free) then A is always satisfied.

Let us first introduce the following notation. et p, ¢ be predicates, we say that
p refers to g in program P if there is a clause of P with p in its head and ¢ in its
body. The depends on relation is the reflexive and transitive closure of refers to.
Let L be a conjunction of literals, by P|; we denote the set of clauses of P that
define the predicates which the predicates in I depend on. We say that a program is
recursion-free if there is no chain py, ..., pp of predicate symbols such that p; refers

2The example is actually a modification of Example 2.1.1 in [89]
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to p;o1 and pr, = pr. With an abuse of notation, we also call a program function-free
if the only terms occurring in it are either ground or variables.

We can now state the following.

Proposition 5.2.6 For each index 7, and each w € 1, let us denote by L., the
subset of B; formed by those literals where w occurs. If for every [,,, one of the
following two conditions holds:

(a) Py]j s recursion-free, or
(b) Py |, is function-free;

then each ¢; satisfies A.

Proof. First we need the following Observation.

Observation 5.2.7 Let () be a function-free or a recursion-free program, then for some

integer k, Fit(Q) = @gk
Proof. Straightforward 0

Now fix an index 7, and let w; = wy,...,w,,, and let M be the subset of B; consisting
of those literals that do not contain any of the variables in w;. It is immediate that,
for any ordinal «, and for any substitution

L f= T, B iff L = Fun L0 A oo A Ty, Lo A MO (5.1)

Now suppose that, for some ordinal a, and substitution 8, Jw; B;f is false in d);:’_
By (5.1), either (7) M8 is false in d);:’j or (ii) there exists an 7 such that Jw; L0 is
false in d);:’; we treat the two cases separately.

(i), M is false in q')g:, then, by the definition of ®p,, there exists a non-limit
ordinal 3 < o such that M8 is false in q');?, and, by (5.1), J; Bif is false in (T);?_

(11), Fw; L,,0 is false in q')g:, since P |f/w is function or recursion-free, by Ob-

servation 5.2.7 there exists an integer k such that Jw; f/wﬂ is false in d)yj; again, by
. o . 1k
(5.1), F; Bif is false in ®p". )
So, in any case, there exists a non-limit ordinal 3 < o such that Jw; B;0 is false
n d);?_ Since this holds for any index 7, the thesis follows. O

Checking A “a posteriori”

We now show that condition A holds in Fy iff it holds in any program of the unfold
part of the transformation sequence. This gives us the opportunity of providing
further sufficient conditions.

First let us restate A as follows:

A’: For each substitution # and non-limit ordinal 3, if H;0 is false in q');?H, then
H,0 is false in d);? as well.
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Now, let P/ be a program which is obtained from P; by applying some unfolding
transformation. Tt is easy to see® that H; satisfies A’ in Py iff H; satisfies A’ in P/.
So the advantage of A’ over A is that it can be checked a posteriori at any time
during the unfolding part of the transformation. So Proposition 5.2.6 can be restated
as follows.

Proposition 5.2.8 Let P/ be a program obtained from P; by (repeatedly) applying
the unfolding operation. Let D/ be the subset of P’ corresponding to Dger in P. If
for each clause ¢ of D), and for every variable y, local to the body of ¢
o P1I|f,1, is recursion-free or function-free,
where f/y denotes the subset of the body of ¢ consisting of those literals where

Y OCCurs;

then each ¢; satisfies A in Py.

Proof. It is a straightforward generalization of the proof of Proposition 5.2.6. O

5.3 Correctness of the transformation

The aim of this section is to prove the correctness of the transformation schema wrt
Fitting’s semantics, Theorem 5.2.3.

Correctness of the unfold operation

First we consider the unfold operation.

Corollary 5.3.1 (Correctness of the unfold operation) l.et P’ be the result of
unfolding an atom of a clause in P. Then

o Fit(P) = Fit(P')

Proof. This is a subcase of Corollary 4.7.2, and the proof follows directly from
Lemma 4.7.1. O

It should be mentioned that, because of the particular structure of the transforma-
tion sequence, here we never use self-unfoldings (that is, unfoldings in which the same
clause is both the unfolded clause and one of the unfolding ones). Consequently the
correctness of Step 2 follows also from a result of Gardner and Shepherdson [47, The-
orem 4.1] which states that if the program P’ is obtained from P by unfolding (hut

not self-unfolding), then C'omp(P) and Comp(P’) are logically equivalent theories®.

The following is a second, technical result on the consequences of an unfolding
operation which will be needed in the sequel.

3This is a direct consequence of Lemma 4.7.1
*In [47] this result is stated for the usual two-valued program’s completion. By looking at the
proof it is straightforward to check that it holds also for the three-valued case
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Lemma 5.3.2 Let P be a normal program, ¢ : A « K. be a definite, clause of P.
Suppose also that ¢l is the only clause of P whose head unifies with Af. If P’ is
the program obtained by unfolding at least once all the atoms in K, then, for each
non-limit ordinal «

o if A is true (resp. false) in q')gy+1 then A0 is true (vresp. false) in d'ﬁ;f

Proof. Let us first give a simplified proof by considering the case when R consists
of two atoms H,.J and we perform a single unfolding on them; we will later consider
the general case.

Let {Hy « B N éﬂ} be the set of clauses of P whose head unify with
H via mgu’s ¢, ..., ¢,, and let {.J; « 61.7 R (:Ym} be the set of clauses of
P whose head unify with JJ. Unfolding H in ¢/ and then J in the resulting clauses,
will lead to the following program:

P'= P\{ely U{di;: (A B, Ci)05,)}

Where 0, ; = mgu(J¢;, J;). Here some of the clauses d;; may be missing due to the
fact that J¢; and J; may not unify, but this is of no relevance in the proof.

Note that the clauses d, ; are the only clauses of P’ whose head could possibly
unify with A.

Let g = Var(H,J)\Var(A) be the set of variables local to the body. We have to
consider two cases.

a) Afis truein q')gyﬁ. By the definition of ®p, (3 H,.J)0 is truein q')gy. There has
to be an extension o of 8, Dom(o) = Dom(0) Uy = Var(A, H,J) such that (H,.J)o
18 true in q')gy. Let H; + B; and J; (:Yj be the clauses used to prove, respectively,
Ho and Jo. Hence there exists a 7 such that 97;"747'|D0m(,,) = o, Ho = H;0; 7,
Jo = J;0; 7, and (éhéj)ﬂi’ﬂ is true in q')qu. By Lemma 4.7.1, q,)g,,1 C dﬁﬁf",
hence (léh 07)97;"7'7' is true in q')gf*]. It follows that A, ;7 = Ao = A is true in q')gf.

b) A is false in ®T . By the definition of ®p, (Ay H,.J)0 is false in o1, Hence
for all extensions o of 0, such that Dom(o) = Dom(0)Ug = Var(A, H,J), we have
that (H,.J)o is false in q')gy.

Hence for all such o’s, and for all 7,7 and 7 such that 0; ;7|pop@y = 0, Ho =
H.0; 7, Jo = J;0, ;7, we have that (l%7 (374)97;"747' is false in q')qu. By Lemma 4.7.1,
q,)g,,1 C q')gfq7 hence (B;, C;)0;7 is false in 127", Since the clauses d; ; are the
only ones that define A in P’, we have that Af, ;7 = Ao = Af is false in ol

Now to complete the proof, we have to observe two facts:

- First, that if we perform some further unfoldings on the resulting clauses, then
we can only “speed up” the process of finding the truth value of A. In fact, by the
same kind of reasoning used above, if Af is true in ®17 and P” is obtained from P’
by unfolding some atoms in the bodies of the clauses d; ;, then, for some 3 < o, Af
is frue in q');ﬁ,,.

- Second, that if ¢/ contains just one atom, or more than two atoms, then the exact
same reasoning applies. 0O
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The replacement operation

In order to prove the correctness of the unfold/fold transformation schema we will
use (a simplified version of ) the results in chapter 4 on the simultaneous replacement,
operation.

As we explained in section 2.3.2, Fitting’s model semantics corresponds to the
semantics given by Compz(P)z UDCA,. Here, for the sake of notation’s simplicity,
given two first-order formulas F and F' and a normal program P, instead of writing,
F =ZoomprPyunca, F (See definition 4.1.2 and Lemma 4.2.3) we'll write F' ~p I,
or, equivalently, we'll say that F' is equivalent to F wrt Fit(P), Moreover, if the delay
of F'wrt Fin Ifp(®p) is zero (see Definition 4.2.5) we’'ll say that F' is not-slower that
E. The following Theorem is a particular case of Corollary 4.2.7.

Theorem 5.3.3 Let P’ be a program obtained by simultaneously replacing the con-
junctions {Cq,...,C,} with {Dy,.... D,} in the bodies of the clauses of P. Tf for
each (;, there exists a (possibly empty) set of variables #; such that the following
three conditions hold:

(a) [locality of the variables in #;]. #; is a subset of the variables local to C;
and l~77;, that is, 7; C V(J,r(a;) U V(],T(f)i) and the variables in #; don’t occur in
{]51 R, f)i,h ]~77;+1 R, 15”} nor anywhere else in the clause where (:th is found.

(b) [equivalence of the replacing and replaced parts]. 3%; D; ~p 37 C;

(¢) [the D;’s are not-slower than the C;’s]. 3%; D; is not-slower than 33, C;.

then Fit(P) = Fut(P’).
A property we will need in the sequel is the following.

Proposition 5.3.4 Suppose that A < (', I/ is a clause of P and that P’ is obtained
from P by replacing ' with D in such a way that the conditions of Theorem 5.3.3
are satisfied (so that Fit(P) = Fit(P’)). Then

o Fach time that Af is true (vesp. false) in T then A0 is true (resp. false) in
ol

Proof. This is a consequence of the fact that the replacing conjunction is not-slower
than the replaced one. The formal proof is omitted here, it can be inferred by
analyzing the proof of Theorem 4.2.6. O

Before we provide the proof of the correctness of the four step schema, we need
to establish some further preliminary results. The first one states that the converse
of A holds in any case.

Proposition 5.3.5 Fach time that 3 B6 is frue in some q');?, then there exists a
non-limit ordinal a < 3 such that Jw B0 is true in d);:’_

Proof. It follows at once from the definition of Fitting’s operator. O

The following important transitive property holds:
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Proposition 5.3.6 l.et P and P’ be normal programs, F and I be first order for-
mulas;

o If £ ~p F and Fit(P) = Fit(P'), then F ~pi F. 0

Now we can provide the details of the proof.

Correctness of the four step schema

We now prove the correctness of the four step schema. For the sake of simplicity
we restrict ourselves to the case in which Step 7 introduces only one clause. The
extension to the general case is straightforward.

Let Py, ... P; be the sequence of programs obtained via the four step schema: P,
is the initial program, i.e. the one that contains Dye. P, P53 and Py, are the programs
obtained by applying steps Step 2 through Step 4. In order to show that the Fitting’s
models of programs Py, ... P; coincide, we proceed as follows:

By the correctness of the unfolding operation, Corollary 5.3.1 we have that Fit(P) =
Fit(Py).

We perform some further unfolding on some atoms of P, obtaining a new program
that we will call P, , again by Corollary 5.3.1 we have that Fit(Py) = Fit(Py,); then
we produce a “parallel sequence” of programs Ps,,, Py, by applying the simultaneous
replacement operation, miming, to some extent, the original transformation. By
applying Theorem 5.3.3 we will show that Fit(Py,) = Fit(Ps,) = Fit(Py,).

Finally we show that programs Ps, and P,, are obtainable respectively from Ps
and P, by appropriately applying the unfold operation, and hence, by Corollary 5.3.1,
that Fit(Ps) = Fut(Pa,) and that Fit(Py) = Fit(Py,). This will end the proof. Fig.1

illustrates both the original transformation and its parallel sequence.

Initial program

Let us establish some notation: P, ... Py are the programs obtained by applying
the four step schema to program P, and ¢y : H « B. is the (only) clause added
to program P in Step 1. We also denote by w the set of the local variables of ¢;,
w = Var(B)\Var(H). For the moment, let us make the following restriction:

e till the end of 5.3, we assume that B3 doesn’t contain negative literals.

Later, in subsection 5.3, we will prove the general case.

A simple consequence of the fact that ¢g is the only clause defining the predicate
symbol of H is the following.

Observation 5.3.7

o H~p duB; O
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PQ and PQu,

P, is obtained by unfolding some of the atoms in l% so P, = PU{A, « [ML;, Ni}j
where the atoms in N are those that have not been unfolded during Step 1 (N stands
for Not unfolded, while UU for Unfolded), so N; is equal to a subset of an instance of
B and each A; is an instance of /. We obtain Py, from P, by further unfolding all
the atoms in each N;. We denote by {ci;: (A; (Nfi)’ym, f)”} the set of clauses of
Py, obtained from clause ¢; by unfolding the atoms in /(C By the correctness of the
unfolding operation, Corollary 5.3.1, we have that

Fit(P)) = Fit(Py) = Fit(Py,) (5.2)

P = PU Dget
where Dgor = {co : H < B}

PQ =PU D”nf PQu, = PU Du,n,f*
where Dne = {¢; 0 A; < U;, N;} where Donpe = {P:7 : (Aft — ﬁvﬁ)%ﬁ,ja f)v?}

Py = P U Dgq Pa, = P U Dyox
where Digg = {(': t A [Jila Ni}where Dfolr]* = {C:I,j : (A7 — [NJ;)’WJ’ f)i,j}

Py = Proia U Dioiq — Pry = Piotd U D pordss
where Diora = {(': : Ai — [Jila Ni}where Dfolr]** = {C:I,j : (A7 — []771)7777,77 D:J}

Fig. 1. Diagram of the transformation (left) together with the “parallel sequence”
(right).

Moreover, the following properties hold:

Observation 5.3.8

o Hr~p, dubB;

o I is not-slower than T B in Ps,,.

Proof. From Observation 5.3.7 we have that H ~p, dw B. The first statement follows
then from (5.2) and Proposition 5.3.6. For the second, fix # and let 3 be the least
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ordinal such that Jw B0 is true (or false) in q')Tﬁ The clauses defining the atoms in

B are the same in P, Py and P,,, so Jw Bis frwp (resp. false) in d);? as well. From
condition A and Proposition 5.3.5 we have that 3 is a non-limit ordinal. Hence, by

the definition of ®, HO is true (resp. false) in QV)L?H, and, by Lemma 5.3.2 H# is true
(resp. false) in q');fu. O

P3 and P371,

Ps,, is obtained from P,, as follows.

Suppose that in Step 2 we performed a recursive folding on the clause ¢;
A; B RH/\C of P,, obtaining ¢ : A; < HO RH/\C in P;. In the diagram we
deno‘re by U the conjunction of literals requ]‘rmg from the application of the recursive
folding on the conjunction U; (so U; = BO, R; and U/ = H, R;).

On Py, we then perform the following. In each of the clauses ¢; ; we transform
f]fym into [Mfi"y?;’j by replacing conjunctions of literals of the form éﬂm ; with HO~; ;

wherever needed; we call the resulting clauses ¢, .. 1t is easy to see that if we unfold

/

i
all the atoms in N; in the body of clause ¢. in P3, then the resulting clauses are exactly
the ¢. . in P3,; this is best shown by the diagram. Hence P, is obtainable from P; by

¥

appropriately applying the unfolding operation. From Corollary 5.3.1 it follows that
Fit(Ps) = Fit(Psy) (5.3)

Now we show that Fit(Py,) = Fit(Ps,). First we need the following.

Proposition 5.3.9 let () be a program, A, B be atoms and ¢ be a set of variables,
such that A ~g dy B. Suppose also that 7 is a renaming over g and that for each
variable z that occurs in A or B, but not in g, Var(zn) N Var(yn) = 0. Then

o An~q3(yn) Bn
Proof. Straightforward. O

Since «;; results from unfolding the atoms in Nm we have that Dom(~; ;) N Var(c¢;)
C Var(N;). Hence, by the conditions on 8 in Step 2, Dom(v,;) N = @ and
wh~; ; = wh; so v, ; 1s a renaming over w, and the variables in wf~y, ; do not occur
anywhere else in ¢; ;. From Observation 5.3.8 and Proposition 5.3.9 we have that

o HOvij~p,, ibyi;) BOvi; .
o [0~ is not-slower than (why, ;) BOv;; in Pa,.

Since we obtained Pz, from Py, by simultaneously replacing conjunctions (of the

form) Bé~;. with Hé~; ., by Theorem 5.3.3
Fit(Py,) = Fit(Ps,). (5.4)

Moreover, the following properties hold:

Observation 5.3.10
o H ~p, dw B;
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o I is not-slower than T B in Pa,.

Proof. The first statement follows from Observation 5.3.8, (5.4) and Proposition 5.3.6.
For the second first note that going from P, to Ps, we have affected only clauses that
define the predicate new, moreover no other predicates definition depends on these
clauses, in particular the atoms in B are independent from them, hence, since H is
not-slower than T B in Ps.,, the statement follows from Proposition 5.3.4. O

P4 and P471,

P, is obtained from P by transforming some of the clauses of P of the form A « ]—?97 F
into A« HO. I,

Now we want to obtain Py, from Ps, in such a way that Py, is obtainable also
from P, by unfolding the atoms in the conjunctions N;.

Tet d : A<« Bf,E be one of the clauses of P; that are transformed in Step /.
First note that d belongs both to P; and Fs,, in fact d was already present it the
original program P, and never modified. We can then apply the same operations
to the clauses of Ps,. Observe that for the conditions on 6 given in Step 4, and by
Observation 5.3.10 we have that

Observation 5.3.11

o HO ~p, (b)) BH

o 0 is not-slower than 3(w0) BO in Py, 0O

Second, notice that in case that d was used as unfolding clause for going from P,
to P,,, then some instances of Bo were propagated into Ps,. Using the notation of
the diagram, this is the case when some /(C; (in Py) is of the form A’ ﬁ? where A and
A’ are unifiable atoms, then one of the f)m (in Py,) is of the form ﬁm = (lé, ]57;)9'.
However, if we unfold N; in Py, what we get is 15:7 — HO', F., that has H8' instead

of BY. By the same argument used for O~;; in 5.3, we have that
Observation 5.3.12
o HO ~p, (b)) BY )
o 0" is not-slower than 3(wd') BH in P, O

So in order to obtain Py, from Ps, we have then to do two things: First, replace
B0, with the corresponding H0 in all the clauses d that are transformed in Step 4.
Second, replace B with H# in the f)m’ so that Py, contains f):7 instead of f)m.
This tantamounts to the application of a simultaneous replacement.

From Observations 5.3.11 and 5.3.12, and Theorem 5.3.3 we have that

Fit(Ps,) = Fit(Py,) (5.5)

Moreover Py, is obtainable from Py by unfolding all the atoms in the conjunctions
N; in the clauses where they occur. Hence

Fit(Py) = Fit(Py,). (5.6)

So far, because of (1), (2), (3), (4) and (5), we have the following



86 Chapter 5. Preservation of Fitting’s Semantics . ..

Proposition 5.3.13 If condition A holds and B does not contain negative literals,
then

o Fil(P) = Fil(Py) = Fit(Ps) = Fit(P,) 0

The general case

We can finally prove Theorem 5.2.3. Let us state it again.

Theorem 5.2.3. [let Py,..., Py be a sequence of programs oblained applying the
transformation schema to program P, Let also Daos = { H; < B;} be the set of clauses
introduced in Step 1, and, for each 1, w; be the set of local variables of ¢;: w; =

V(J,r(l%;)\V(J,r(H?;). If each ¢; in Dqos satisfies the following condition:

A each time that 30; ]—29 15 false in some d);?, then there exists a non-limit ordinal
a < 3 such that Jw; ]—29 15 false in d)g’

Then Fit(P)) = Fit(Py) = Fit(Py) = Fit(P,).

Proof. We consider here the simplified case in which Step 1 introduces only one
clause which in turn contains only one negative literal in the body, i.e. Dy =
{co: H«=l(y), B'}. The generalization to the case of multiple clauses and multiple
negative literals is straightforward and omitted here. Notice that if ¢y contained no
negative literals, then the result would following directly from Proposition 5.3.13.
We now perform a double transformation on P;: first, we enlarge it with the
following new definition: d : notl(f) < —I(); then, we replace each instance —I(#)
of I(f) that occurs in the body of a clanse with the corresponding instance notl(f)
of notl(y). This replacement operation clearly preserves Fitting’s model of the pro-

grams, in fact it can be undone by unfolding. Let us call P| the program so obtained.
We have that
Fit(Py) = Fit(P)|g,, (5.7)

Where Fit(P)|g,, denotes the restriction of Fit(P) to the atoms in the Herbrand
base of P;.

Now P/ contains, instead of clause ¢q, the following: ¢, = H + notl(y), B’ which
is a definite clause.

Now notice that, since the unfold operation is defined only for positive literals, then
=I(y) is never unfolded in the transformation Py ... P,. Tt follows that, by performing
the same operations used for going from P; to P4, we can obtain another “parallel
sequence” P/... P; that starts with program P/. By the same arguments used to
prove (5.7), we have that, for i € [1...4],

Fit(P) = Fit(Pl)ls,, (5.5)
Moreover, by Proposition 5.3.13,
Fit(P)) = Fit(Py) = Fit(P;) = Fit(Py) (5.9)

From (5.8) and (5.9) the thesis follows. 0O



Chapter 6

Unfold /Fold Transformations of CLP
Modules

In this chapter We propose a transformation system for CLLP programs and modules.
The framework is inspired by the one of Tamaki and Sato for pure logic programs [96].
However, the use of CL.P allows us to introduce some new operations such as splitting
and constraint replacement. We provide two sets of applicability conditions. The
first one guarantees that the original and the transformed programs have the same
computational behaviour, in terms of answer constraints. The second set contains
more restrictive conditions that ensure compositionalily: we prove that under these
conditions the original and the transformed modules have the same answer constraints
also when they are composed with other modules. This result is proved by first
introducing a new formulation, in terms of trees, of a resultants semantics for CI.P.
As corollaries we obtain the correctness of both the modular and the non-modular
system w.r.t. the least model semantics.

6.1 Introduction

Modular Constraint Logic Programs

Constraint Logic Programming (CLP for short) is a powerful declarative program-
ming paradigm in which constraints are primitive elements and the computation is
specified by a logical inference rule. CI.P has already been successfully employed in
many diverse fields such as financial analysis [63], circuit synthesis [49] and combinat-
orial search problems [97]. Tts success is partially due to the fact that the declarative
nature of CL.P allows us to solve complex problems by simple and concise programs.
CLP’s flexibility can be further enhanced by the adoption of constructs for structuring
programs. This is an important step forward as the incremental and modular design
is by now a well established software-engineering methodology used to design, verify
and maintain large applications. Indeed, splitting a program into several smaller
modules reduces the complexity of the design and of the validation phases. Moreover,

87
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it also helps to develop adaptable software, as changes in program’s specification can
affect only some modules rather that the whole program. For these reasons, modular-
ity has been receiving received a considerable attention and, as the recent survey [24]
shows, in the last few years several different proposals were introduced for integrating
module constructs into logic languages. Here we adhere to the original approach of
R. O’Keefe [76], and we consider a constraint logic program to be a combination of
several separate modules, where different modules are combined together by a simple
composition operator .

Motivation

ATl the (unfold /fold) transformation systems proposed so far for (constraint) logic
programs, with the only exception of [69], assume that the entire program is available
at the time of transformation. This is often an unpractical assumption, either because
not all program components have been defined, or because for handling the complexity
a large program has been broken into several smaller modules.

Now, a transformation system for modules requires ad-hoc applicability condi-
tions: when we transform P into P’ we don’t just want P and P’ to have the
same (answer constraint) semantics: we want them to be ohservationally equivalent
whatever the context in which they are employed. When this condition is satisfied
we say that P and P’ are observationally congruent.

In this chapter, we develop a transformation system for the optimization of CI.P
modules. This is accomplished in two steps. First, we generalize the unfold/fold
system of Tamaki and Sato [96] to CI.P programs. The full use of CLP allows us to
introduce some new operations, such as splitting and constraint replacement, which
broaden the range of possible optimizations. In this first part we also define new
applicability conditions for the folding operation which avoid the use of substitutions
and which are simpler that the ones used previously.

Afterwards, we define a (compositional) transformation system for modules. This
is obtained by adding some further applicability conditions, which we prove sufficient
to guarantee that the transformed module is observationally congruent to the ori-
ginal one. This system allows us to transform independently the components of an
application, and then to combine together the results while preserving the original
meaning of the program in terms of answer constraints. This is useful when a pro-
gram is not completely specified in all its parts, as it allows us to optimize on the
available modules. When a new module is added, we can just compose it (or its
transformed version) with the already optimized parts, being sure that the compos-
ition of the transformed modules and the composition of the original ones have the
same computational behaviour in terms of answer constraints.

This result is proved by using a new formulation, in terms of trees, of a resultants
semantics which models answer constraints and is compositional w.r.t. union of
programs. From a particular case of the main theorem it follows that also the non-
modular transformation system preserves the computational behaviour of programs.
Finally, since the least model (on the relevant algebraic structure) can be seen as
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an abstraction of the compositional semantics, we obtain as a corollary that also the
least model is preserved.

This chapter is organized as follows. The next Section contains some preliminaries
on CLP programs. In Section 6.3 we introduce the notion of module and we formalize
the resultants semantics for CLLP by using trees. Section 6.4 provides the definition
of the transformation system. In Section 6.5 we add the applicability conditions
needed to obtain a modular system and we state the main correctness result. In
Section 6.6 we show that the Tamaki-Sato’s system can be embedded into ours. As a
consequence, the conditions given in Section 6.5 can also be added to those defined in
[96] in order to obtain a modular unfold/fold system for pure logic programs. Section
6.7 concludes by comparing our results to those contained in two related works. The
proof of the main technical result is deferred to the Appendix.

6.2 Preliminaries: CLP programs

The Constraint Logic Programming paradigm CLP(X) (CLP for short) has heen
proposed by Jaffar and lLassez [52, 51] in order to integrate a generic computational
mechanism based on constraints with the logic programming framework. The ad-
vantages of such an integration are several. From a pragmatic point of view, CLP(X)
allows one to use a specific constraints domain X and a related constraint solver
within the declarative paradigm of logic programming. From the theoretical view-
point, CLP provides a unified view of several extensions of pure logic programming
(e.g. arithmetics, equational programming) within a framework which preserves the
existence of equivalent operational, model-theoretic and fixpoint semantics [52]. In-
deed, as discussed in [69], most of the results which hold for pure logic programs can
be lifted to CI.P in a quite straightforward way.

The reader is assumed to be familiar with the terminology and the main results
on the semantics of (constraint) logic programs. In this subsection we introduce some
notations we will use in the sequel and, for the reader’s convenience, we recall some
basic notions on constraint logic programs. [loyd’s book and the survey by Apt
[65, 3] provide the necessary background material for logic programming theory. For
constraint logic programs we refer to the original papers [52, 51] by Jaffar and Lassez
and to the recent survey [53] by Jaffar and Maher.

The CLP framework was originally defined using a many-sorted first order lan-
guage. In this chapter, to keep the notation simple, we consider a one sorted language
(the extension of our results to the the many sorted case is immediate). We assume
programs defined on a signature with predicates Y consisting of a pair of disjoint sets
containing function symbols and predicate symbols. The set of predicate symbols,

denoted by 11, is assumed to be partitioned into two disjoint sets: Tl (containing pre-

2

, and

dicate symbols used for constraints) which contains also the equality symbol “=
IT,, (containing symbols for user definable predicates). All the following definitions
will refer to some given X, TI. and II,,.

The notations ¢ and X will denote a tuple of terms and of distinct variables
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respectively, while B will denote a (finite, possibly empty) conjunction of atoms.

[T

The connectives and O will often be used instead of “A”to denote conjunction.

A primitive constraint is an atomic formula p(tq,...,1,) where the #,’s are terms
(built from 3 and a denumerable set of variables) and p € Tl.. A constraint is a first
order formula built using primitive constraints. A CLP rule is a formula of the form

HeecOB,... B,

where ¢ is a constraint, H (the head) and By,..., B, (the body) are atomic for-
mulas which use predicate symbols from 11, only. A goal (or query), denoted by
c O By,...,B,, is a conjunction of a constraint and atomic formulas as before. A
CLP program is a finite set of CLP rules.

The semantics of CILP programs is based on the notion of structure. Given a
signature with predicates 3, a Y-structure (structure for short) D consists of a set
(the domain) D and an assignment of functions and relations on D to the function
symbols in ¥ and to the predicate symbols in Tl respecting arities.

A D-interpretation is an assignment that maps each predicate symbols in 11, to
a relation on the domain of the structure. A D-interpretation [ is called a D-model
of a CLLP program P if all the rules of P evaluate to true under the assignment of
relations and function provided by I and by D. We recall that there exists ([51])
the least D-model of a program P which is the natural CILP counterpart of the least
Herbrand model for logic programs.

Given a structure D and a constraint ¢, D | ¢ denotes that ¢ is true under
the interpretation for constraints provided by D. Moreover if ¥ is a valuation (i.e.
a mapping of variables on the domain D), and D | ¢ holds, then 9 is called a
D-solution of ¢ (¢} denotes the application of 9 to the variables in ¢).

Here and in the sequel, given the atoms A, H, we write A = H as a shorthand
for:

-ay =H AN ... Na, =1,,if, for some predicate symbol p and natural n, A =
plar,...,a,) and H = p(ty,...,1,)

- false, otherwise.

This notation readily extends to conjunctions of atoms. We also find convenient
to use the notation 3_; ¢ from [53] to denote the existential closure of the formula ¢
excepl for the variables @ which remain unquantified.

The operational model of CLP is obtained from SLID resolution by simply sub-
stituting D-solvability for unifiability. More precisely, a derivation step for a goal
(G: cg O By,..., B, in the program P results in the goal

Co/\(Bi: H)/\CD B17...7Bi,17B7Bi+17...7Bn

provided that B; is the atom selected by the selection rule and there exists a clause in
P standardized apart (i.e. with no variables in common with G) H « ¢ O B such that
(co N (B = H) A ¢)is D-satisfiable, that is, D = 3o A (B; = H) A ¢. A derivation
of length 7 for a goal (75 in the program P is a sequence of goals (=g, (71, ..., (H; such
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that G is obtained from (;_1 in one derivation step in P, for j € [1,i]. In the

following a derivation £ : (g, Gy, ..., G; in P will be denoted by (7 L@ and its
length by [£| Notice that, with this notation, a derivation of length zero is denoted by

G4 GoA successful derivation (refutation) is a finite derivation whose last element
is a goal of the form (¢ O). In this case, d_var@) € is called the answer constraint
and is considered the result of the computation.

Finally, by naturally extending the usual notion used for pure logic programs, we
say that a query ¢ O C is an instance of the query d O D iff for any solution ~ of ¢
there exists a solution & of d such that Cy = DJ.

6.3 Modular CLP Programs

Following the original paper of R. O’Keefe [76], the approach to modular programming
we consider here is based on a meta-linguistic programs composition mechanism.
This provides a formal background to the usual software engineering techniques for
the incremental development of programs.

Viewing modularity in terms of meta-linguistic operations on programs has several
advantages. In fact it leads to the definition of a simple and powerful methodology for
structuring programs which does not require to extend the CI.P theory (this is not the
case if one tries to extend CLP programs by linguistic mechanisms richer than those
offered by clausal logic). Moreover, meta-linguistic operations are quite powerful,
indeed the typical mechanisms of the object-oriented paradigm, such as encapsulation
and information hiding, can be realized by means of simple composition operators
(116)).

Here, in order to keep the presentation simple, we follow [22] and say that a
module M is a CLLP program P together with a set Op(M) of predicate symbols
specifying the open predicates.

Definition 6.3.1 (Module) A CLP module M is a pair (P,Op(M)) where P is a
CLP program and Op(M) is a set of predicate symbols. O

The idea underlying the previous definition is that the open predicates, specified in
Op(M), behave as an interface for composing M with other modules. The definition
of open predicates could be partially given in M and further specified by importing
it from other modules. Symmetrically, the definitions of open predicates may be
exported and used by other modules. A typical practical example is a deductive
database composed of two modules, in which the first one 7 contains the intensional
part in the form of some rules which refer to an unspecified extensional part. This
latter is defined in the second module £ which contains facts (unit clauses) describing
the basic relations. In this case the extensional predicates which are defined in £ are
exported to Z, which in turn imports them when composing the two parts. Further
definitions for the extensional predicates can be incrementally added to the database
by adjoining new modules.

To simplify the notation, when no ambiguity arises we will denote by M also the
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set of clauses P. To compose CLP modules we again follow [22] and use a simple
program union operator. We denote by Pred(F) set of predicate symbols which
appear in the expression F.

Definition 6.3.2 (Module Composition) Let M = (P, Op(M)) and N = (Q,Op(N))
be modules. We define

M@&N=(PUQ,Op(M)UOp(N))

provided that Pred(P) N Pred(Q) € Op(M) N Op(N) holds. Otherwise M & N is
undefined. O

So, when composing M and N, we require the common predicate symbols to be
open in both modules. As previously mentioned, more sophisticated compositions
(like encapsulation, inheritance and information hiding) can be obtained from the
one defined above by suitably modifying the treatment of the interfaces (essentially
by introducing renamings to simulate hiding and overriding).

Now, in order to define the correctness of our transformation systems, we need
to fix the kind of module’s (and program’s) equivalence that we want to establish
between a program and its transformed version.

Since the result of a CLLP computation is an answer constraint, it is natural to
say that two programs are observationally equivalent to each other iff they produce
the same answer constraints (up to logical equivalence in the structure D) for any
query. This concept is formalized in the following Definition.

Definition 6.3.3 (Program’s Equivalence) let P, P, be CLLP programs. We
say that Py and Py are (observationally) equivalent,

P~ P

iff, for any query ) and for any 7,5 € [1,2], if there exists a derivation 5§ ¢; O then
. . . P

there exists a derivation @ ~* ¢; O such that D = A vary ¢ < dvarg) ¢ O

This notion is satisfactory when programs programs are seen as completely defined

units.  However, the relation & is far too weak when considering modules. For
instance, consider the following

Example 6.3.4 Consider the modules My : (Py,{p}) and My : (Ps,{p}) where P,
1S

q(X) +true Op(X).

p(X) +X=a 0O.
While P, is

q(X) «+X=a Op(X).
p(X) +X=a 0O.

It is easy to see that Py = P,. However, if we compose these two modules with

M : (P,{p}) where P is the program
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p(X) «X=b O .

we have that M, & M and My & M have quite different behaviour, in particular

The notion of equivalence which we need when transforming CLLP modules has
to take into account also the contexts given by the @ composition. In other words,
we have to strengthen & to obtain a congruence wrt the & operator. Therefore the
following.

Definition 6.3.5 (Module’s Congruence) Let M; and M, be CLP modules. We
say that My is (observationally) congruent to My,

My ~. M,

iff Op(My) = Op(M3) and for every module N such that My & N and My & N are
defined, My & N ~ My & N holds. O

So My =, M, iff they have the same open predicates and, for any query, they
produce the same answer constraints in any ®-context. By taking N as the empty
module we immediately see that if M, =. M, then My = M,.

This notions of equivalence and of congruence are used to define the correctness of
our transformation system: we say that a transformation for CI.P programs (modules)
is correct iff it maps a program (a module) into an &~ (&.-) equivalent one.

A compositional semantics for CLP modules

The correctness proofs for our transformation system will be carried out by showing
that the system preserves a semantics (borrowed from [42]) which models answer
constraints and is compositional w.r.t. 6. This implies that it is also correct w.r.t.
/., in the sense that if two modules have the same semantics then they are .-
equivalent. From this property it follows the desired correctness result. Basically,
the semantics we are going to use us a straightforward lifting to the CLP case of
the compositional semantics defined in [22] for logic programs. The aim of [22] was
to obtain a semantics compositional w.r.t. union of programs. In this respect it is
easy to see that the standard semantics, such as the least D-model and the computed
answer semantics, are not compositional wrt &; consider for instance the modules
M; and M, in Example 6.3.4: they have the least D-model, where M; & M and
My & M don’t (the same reasoning applies for the answer constraint semantics of
[43]). Following an idea first introduced in [44], compositionality was then obtained
by choosing a semantic domain based on clauses. As we discuss below the resulting
semantics turns out to model the notion of “resultant”, hence its name.

In order to define the semantic domain, we use the following equivalence relation,
which, intuitively, is a generalization to the CILP case of the notion of variance.

Definition 6.3.6 Tet ¢/, : A, < ¢, O B, and cly : Ay ¢ ¢y O By be two clauses.
We write ¢y ~ cly iff for any 7,7 € [1,2] and for any D-solution ¥ of ¢; there exists
an D-solution v of ¢; such that A;) = A;v and B;v and B,y are equal as multisets.



94 Chapter 6. Unfold/Fold Transformations of CLP Modules

Moreover, given two programs P and P’ we say that P ~ P’ iff P’ is obtained by
replacing some clauses in P for ~-equivalent ones. O

Notice that, in the previous definition, the body of a clause is considered as a
multiset. Considering bodies of clauses as sets instead of multisets would not allow
to model correctly answer constraints, since adding a duplicate atom to the body of
a clause can augment the set of computed constraints. For instance, if we consider
the programs ) :

q(X,Y) +true Or(X,Y),r(X,Y).
r(X,Y) <+ X=a.
r(X,Y) < ¥=b.

and (), :

q(X,Y) + true Or(X,Y).
r(X,Y) <+ X=a.
r(X,Y) < ¥=b.

The query q(X,Y) has the computed answer constraint X =aAY =bin (), and not
n QQ.

The following Lemma shows that the equivalence relation ~ is correct wrt the
congruence relation /..

Lemma 6.3.7 [42] Let M = (P, m) and M’ = (P’ 7) be two modules with the same
set. of open atoms. If P ~ P’ then M ~. M’. O

We are now able to define the semantic domain. For the sake of simplicity, we
will denote the ~-equivalence class of a clause ¢ by ¢ itself.

Definition 6.3.8 (Denotation) Let 7 be a set of predicate symbols and let C be
the set of the ~-equivalence classes of the CILP clauses in the given language. The
interpretation base Cy is the set {A <« ¢ 0O B € C | Pred(B) C w}. A denotation is
any subset of C,. O

The following is the definition of the resultant semantics as it was originally given
in [22] for pure logic programs and applied to CLP in [42].

Definition 6.3.9 (Resultants Semantics for CLP) Let M = (P,Op(M)) be a

module. Then we define

O(M)={p(¥)—cD B e Copvy | there exists a derivation true O p(3) Lol
O

If there exists a derivation ¢ 0 A £ d 0 B. then the formula ¢ 0 A+ d 0O B is
called a computed resultant for the query ¢ O A in P. Tt can be shown that computed
resultants for generic queries can be obtained by combining together resultants for
simple queries of the form true O p(3). Therefore O(M) is expressive enough to
characterize all the resultants computable in P. In particular, O(M) models also
the answer constraints computed in M, since these can be obtained from resultants
of the form ¢ O A« d O . The compositionality of previous semantics w.r.t. @ is
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proved in [42]. From such a result it follows the correctness of O w.r.t. ., stated
by the following Corollary.

Corollary 6.3.10 (Correctness, [42]) Let M = (P,Op(M)) and N = {(Q,Op(N))
be modules such that Op(M) = Op(N).

o IfO(M)=0O(N) then M ~. N. O

In the particular case Op(M) = (), i.e. when all the predicates are completely
defined, O(M) coincides with the answer constraint semantics which is correct and
fully abstract w.r.t. ~ ([43]).

Example 6.3.11 Consider again the modules M; and M; of Example 6.3.4. Then

OM)= {p(X)«X=aDO, g X))« X=a0O, q(X)«trueO p(X)}
OMy)= {p(X)«X=aDO, g X)«X=aO}

So the fact that My and M, are not observationally congruent is reflected by the fact

Resultants semantics via trees

We now provide a new, alternative formulation of the resultant semantics in terms of
proof trees. This particular notation will be used to prove the correctness results.

We assume known the usual notion of finite labeled tree and the related termino-
logy. Given a finite labeled tree rooted in the node N, we say that T” is an immediate
subtree of T if T" is the subtree of T which is rooted in a son of N.

Definition 6.3.12 (Partial proof tree) lLet A be an atom A partial proof tree for
A is any finite labeled tree T satisfying the following conditions

1. The root node of T is labeled by a pair (A = Ag; Ag+ca O Ay, ..., A,) such
that Ag and A have the same predicate symbol.

2. Fach immediate subtree T, of T is a partial proof tree for a distinct A; with
1<j<n.

3. All the clauses used in the labels of T" are pairwise variable disjoint and have
no variables in common with the atom in the Ths (left hand side) of the label
equation in the root node. O

We call label equation and label clause of the node N the left and the right hand
side of the label of N, respectively. Moreover, if A; is an atom in the body of the
label clause of the root of T and T; is an immediate subtrees of T which is a partial
proof tree for A;, we say that T; is attached to A;. Using this notation, condition 2
can be restated as follows: “no two immediate subtrees of T" are attached to the same
atom of the label clause of the root (and therefore, of any) node”. Finally, we say
that 7' is a tree in P, if the label clauses of all its nodes are (variants of) clauses of
the program P.

Notice that, according to previous definition, there might be some A; in the bodies
of label clauses with no subtrees attached to them. We call them the elements of the
residual as specified below.
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Definition 6.3.13 Let T be a partial proof tree.

o The residual of a node in T having the clause label Ag+—c4 O Ay, ..., A, is
the multiset consisting of those A;’s, 1 < j <mn, that do not have an immediate
subtree attached to.

o The residual of T is the multiset resulting from the (multiset) union of the
residuals of its nodes. O

In order to establish the connection between the resultants semantics and partial
proof-trees, we introduce now in a natural way the notion of resultant of partial proof
frees.

Definition 6.3.14 l.et T be a partial proof tree. We call the global constraint of T
the conjunction of all the label equations together with the constraints of all the label
clauses of the nodes of T. O

Definition 6.3.15 l.et T be a partial proof tree of A. Let ¢ be its global constraint
and [y, ..., F} beits residual. If ¢ is satisfiable we call the clause A <« ¢ 0O Fy, ..., F}
the resultant of T'. O

In the sequel we are interested in those partial trees whose residuals consist
exclusively of only open atoms and whose global constraint is satisfiable. Therefore
the following definition.

Definition 6.3.16 l.et 7 be a set of predicate symbols. We call m-atom any atom
A such that Pred(A) € m. An m-lree is a partial proof tree T' such that

1. the residual of T' contains only m-atoms,
2. the global constraint of T' is satisfiable. O

We can now establish the relation between open trees and the resultant semantics.

Proposition 6.3.17 (Correspondence) Let M = (P,Op(M)) be a module. Then
A—cOF € O(M)Miﬂf there exists an m-tree of Ain P with A < ¢’ 0O F” as resultant
such that A«—¢c¢ O F~ A« O F and 7 = Op(M).

Proof. Straightforward. O

6.4 A transformation system for CLP

In this section we define a transformation system for optimizing constraint logic
programs. The system is inspired by the unfold/fold method proposed by Tamaki
and Sato [96] for pure logic programs (which is presented in chapter 1. Here, the
use of constraint logic programs allows us to introduce some new operations which
broaden the possible optimizations and to simplify the applicability conditions for the
folding operation in [96].

Before we begin to define the transformation method, it is important to notice
that all the observable properties of computations we refer to are invariant under ~.
As we formally prove later, this implies that we can always replace any clause ¢l in
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a program P by a clause ¢l’, provided that ¢l’ ~ ¢l. This operation is often useful to
clean up the constraints, and, in general, to present a clause in a more readable form.
We start from the same requirements on the original (i.e. initial) program introduced
in [96]. Here we say that a predicate p is defined in a program P, if P contains at
least one clause whose head has predicate symbol p.

Definition 6.4.1 (Initial program) We call a CL.P program P, an initial program
if the following two conditions are satisfied:

(I1) Fy is partitioned into two disjoint sets P,.,, and P,
(I2) the predicates defined in P,.,, don’t occur in P,; nor in the bodies of the clauses
in PTLQ?U‘ D

Following this notation, we call new predicates those predicates that are defined
in P,..,. We also call transformation sequence a sequence of programs Fy, ..., P,, in
which Fyis an initial program and each P;1y, is obtained from P; via a transformation
operation.

Our transformation system consists of five distinct operations. In order to illus-
trate them throughout this section we will use the following working example. To
simplify the notation, when the constraint in a goal or in a clause is true we omit it.
So the notation H < B actually denotes the CLP clause H « true O B.

Example 6.4.2 (Computing an average) Consider the following CLP(R)' pro-

gram AVERAGE computing the average of the values in a list. Values may be given
in different currencies, for this reason each element of the list contains a term of
the form (Currency, Amount). The applicable exchange rates may be found by call-
ing predicate exchange rates, which will return a list containing terms of the form
(Currency, Exchange Rate), where Exchange Rate is the exchange rate relative to
Currency. AVERAGE consists of the following clauses

average(List, Av) <«
Av is the average of the list List

cl: average(Xs, Av) < Len > 0 A Av#Len = Sum 0O
exchange rates(Rates),
weighted sum(Xs, Rates, Sum),
len(Xs, Len).

weighted sum(List, Rates, Sum) <«
Sum is the sum of the values in the list List
and each amount is multiplied first by the exchange rate corresponding to its currency

weighted sum([], 0).

weighted sum([ (Currency, Amount) | Rest], Rates, Sum) ¢«
Sum = Amount*Value + Sum” 0O
member ((Currency, Value), Rates),
weighted sum(Rest, Rates, Sum”).

'CLP(R) [55] is the CT.P language obtained by considering the constraint domain i of arithmetic
over the real numbers.
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len(List, Len) <«
Len is the length of the elements in the list List

len([], 0 ).
len([H|Rest], Len) < Len = Len“+1 O len(Rest, Len”).

together with the usual definition for member. Notice that the definition of average
needs to scan the list Xs twice. This is a source of inefficiency that can be fixed via
a transformation sequence. O

The first transformation we consider is the unfolding. As previously mentioned,
all the observable properties we consider are invariant under reordering of the atoms
in the bodies of clauses. Therefore the definition of unfolding, as well as those of the
other operations, is given modulo reordering of the bodies. To simplify the notation,
in the following definition we also assume that the clauses of a program have been
renamed so that they are variable disjoint.

Definition 6.4.3 (Unfolding, for CLP) lLet ¢/ : A« c O H, K be a clause in the
program P, and {Hy < ¢, O By, ..., H, < ¢, O B,} be the set of the clauses in P
such that ¢ A ¢; A (H = H;) is D-satisfiable. For i € [1,n], let ¢/’ be the clause

A(—C/\Ci/\(H: Hi)lj B“[%
Then unfolding H in ¢l in P consists of replacing ¢l by {cl},... ¢l } in P. O

In this situation we also say that {Hy < ¢; O ]?17 ... H, ¢, O ]—M?W} are the unfold-
ing clauses.

Example 6.4.2 (part 2) The transformation strategy which we use to optimize
AVERAGE is often referred to as tupling (see [77]) or as procedural join (see [62]).
First, we introduce a new predicate avl defined by the following clause

avl(List, RATES, AV, LEN) «
AV is the average of the list List, and LEN is its length

c2: avl (XS, RATES, AV, LEN) < LEN>0 A AV*LEN = SUM 0O
exchange rates(RATES),
weighted sum(Xs, RATES, SUM),
len(XS, LEN).

avl differs from average only in the fact that it reports also the list of exchange rates
and the length of the list Xs. Notice that avl, as it is now, needs to traverse the list
twice as well.

Now let Py be the initial program consisting of AVERAGE augmented by ¢2 and
assume that avl is the only new predicate. We start to transform F, by perform-
ing some unfolding operations. First we unfold weighted sum(XS, RATES, SUM) in
the body of c2. The resulting clauses, after having cleaned up the constraints and
renamed some variables, are the following ones
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avl([], Rates, Average, Len) < Len > 0 A Average*lLen = 0 0O
exchange rates(Rates),
len([], Len).
avl ([(Currency,Amount)|Rest], Rates, Average, Len) <«
Len > 0 A Average*Len = Amount*Value+Sum” O
exchange rates(Rates),
member ((Currency, Value), Rates),
weighted sum(Rest, Rates, Sum”),
len([{(Currency,Amount)|Rest], Len).

Furthermore, in the above clauses we unfold the atoms len([], Len) and 1len( [<Currency ,Amount>
|[Rest], Len). This yields the following two clauses:

c3: avl([], Rates, Average, 0) <« 0 > 0 A Averagex0 = 0 0O
exchange rates(Rates) .

c4d: avl ([(Currency,Amount)|Rest], Rates, Average, Len) <«
Len > 0 A Len = Len"+1 A Average*Len = Amount*Value+Sum” [J
exchange rates(Rates),
member ((Currency, Value), Rates),
weighted sum(Rest, Rates, Sum”),
len(Rest, Len”). O

Notice that the constraint in the body of clause ¢3 is unsatisfiable. For this reason
c3 could be removed from the body of the program; to do that we need the following
operation.

Definition 6.4.4 (Clause Removal) Let ¢/ : H < ¢ 3 B be a clause in the pro-
gram P. If
DE-de¢

Then we can remove ¢l from the program P, obtaining the program P’ = P\{c/}. O

Note 6.4.5 In [77] we find the definition of a clause deletion operation for pure logic
programs which in CLP terms can be expressed as follows: if ¢/ : H + ¢ O Bis a
clause in P such that query ¢ O B has a finitely failed tree in P2 then we can remove
el from P. Obviously, if D |= =3 ¢ then the goal ¢ O A has a (trivial) finitely failed
tree; therefore each time that we can apply the clause removal operation we can also
apply the clause deletion of [77]. However, clause removal is only apparently more
restrictive than clause deletion, since by combining it with the unfolding operation
we can easily simulate the latter. Tndeed, if ¢ O B has a finitely failed tree in P then,
by a suitable sequence of unfoldings we can always transform the clanse A < ¢ 0 B,
in such a way that the set of resulting clauses is either empty or contains only clauses
whose constraints are unsatisfiable. So using clause removal, we can then (indirectly)
remove ¢l from the program. We prefer to use clause removal rather than clause
deletion, because when we’ll move to the context of modular CILP programs the

2The definition of finitely failed tree for CLP is the obvious generalization of the one for pure
logic programs.
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first operation will remain unchanged while the latter would require some specific
applicability conditions. O

We now introduce the splitting operation. Here, just like for the unfolding oper-
ation, the definition is given modulo reordering of the bodies of the clauses and it is
assumed that program clauses are variable disjoint.

Definition 6.4.6 (Splitting) lLet c/: A< cDO H, R be a clause in the program P,
and {H, ¢, OBy, ..., H, + ¢, 0 B,} be the set of the clauses in P such that
¢ N ¢ N (H = H,;) is D-satisfiable. For i € [1,n], let ¢/} be the clause

Ae—cAhe AN(H=H)OHK

If, for any 4,7 € [1,n], 7 # 7, the constraint (H; = H;) A ¢; A ¢; is unsatisfiable then
splitting H in ¢l in P consists of replacing ¢l by {cl},...,cl’} in P. O

In other words, the splitting operation is just an unfolding operation in which we
do not replace the atom H by the bodies of the unfolding clauses. The condition that
for no two distinct 7, 7, (H; = H;) A ¢; A ¢j is satisfiable is easily seen needed in order
to obtain & equivalent programs. Indeed, consider for instance the program @)

q(X, V) «pX, V)
pla, W).
p(Z, b).

If we split p(X,Y) in the body of the first clause we obtain the program @', which
after cleaning up the constraints consists of the following clauses:

qa, Y) <+ p(a, Y)
q(X, b) «p(X, b)
pla, W).
p(Z, b).

Now @) % Q' since the query q(X,Y) has in ()’ the computed answer {X = a,Y = b},
while such an answer is not obtainable in ().

Note 6.4.7 We should mention that an operation called splitting has also been
defined in a technical report of Tamaki and Sato [95]. However, the operation
described here is substantially different from theirs. In CLP terms the splitting
operation defined in [95] can be expressed as follows. If ¢/ : H<cORB is a
clause and d a constraint then splitting ¢/ via d consists in replacing ¢l by the two
clauses {H < ¢ A d O B, He—cA—dDO é} This operation preserves the minimal
D-model (which corresponds to semantics used in [95]) but is does not produce
A~ equivalent programs. Indeed, if we consider the program P = {p(X).} then

by splitting its only clause w.r.t. the constraint X = a we obtain the program
P = {p(X)+X=a0., p(X)«<X#£a0O.}. Clearly P’ % P, since the query p(X)
returns the answer constraint X = a in P’ only. 0O

Example 6.4.2 (part 3) By applying the splitting operation to len(Rest,L’) in
clause c4 we obtain the following two clauses:
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chb:

c6:

avl ([{Currency,Amount)] ,Rates, Average, Len) +«
Len > 0 A Len =1 A Average*Len = Amount*Value+Sum” [J
exchange rates(Rates) .
member ((Currency, Value), Rates),
weighted sum([], Rates, Sum”),
len([], 0).
avl ([(Currency,Amount),J|Rest], Rates, Average, Len) < Len > 0 A
Len = Len“+1 A Len” = Len”"+1 A Average*Len = Amount*Value+Sum~’
exchange rates(Rates) .
member ((Currency, Value), Rates),
weighted sum([J|Rest], Rates, Sum”),
len([J|Rest], Len”).

In clause c6 we can now remove the superfluous constraint Len” = Len”"+1, and in

c5 we can do some cleaning up and we can unfold hoth weighted _sum([],Rates, Sum’)

and len([],0). After this operations we end up with the following clauses:

cT:

c8:

avl ([(Currency,Amount)] ,Rates, Average, 1) <« Average = Amount*Value 0O
exchange rates(Rates) .
member ((Currency, Value), Rates).
avl ([(Currency,Amount),J|Rest], Rates, Average, Len) +«
Len > 0 A Len = Len"+1 A Average*Len = Amount*Value+Sum” [J
exchange rates(Rates) .
member ((Currency, Value), Rates),
weighted sum([J|Rest], Rates, Sum”),
len([J|Rest], Len”). O

In order to be able to perform the folding operation on clause ¢8 we need now a

last, preliminary operation: the constraint replacement. In fact, as we will discuss

later, to apply such a folding, ¢8 should contain also the constraint Len’ > 0. Clearly,

adding Len’ > 0 to the body of c8 cannot be done via a simple cleaning-up of the

constraints, as it transforms c¢8 in a non ~-equivalent clause. However, notice that the
variable Len’ in the atom len([J|Rest],Len’) (in the body of ¢8) represents the length

of the list [J|Rest]| which obviously contains at least one element. Indeed, every time

that c8 is used in a refutation its internal variable Len’ will eventually be bounded to

a numeric value greater than zero. We can then safely add the redundant constraint

Len’ > 0 to body of c8. This type of operation is formalized by the following definition

of constraint replacement. Notice that this operation relies on the semantics of the

program (in the previous specific case, on the fact that if len([J|Rest], Len’) succeeds

in the current program with answer constraint ¢ then ¢ is equivalent to ¢ A Len’ > 0).

Definition 6.4.8 (Constraint Replacement) Tet ¢/ : H < ¢; O B be a clause of

. S 5 P
a program P and let ¢; be a constraint. If, for each successful derivation true O B ~

40,

D |: 37‘/0,7’(7—]) cr A d < 37‘/0,7’(7—]) c2 N\ d

O
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holds, then replacing ¢ by ¢; in ¢l consists in substituting ¢ by H + ¢, O B in P.
O

Constraint replacement has some similarities with the refinement operation as defined
by Marriott and Stuckey in [73]. Refinement allows to add a constrain ¢ to a program
clause H < ¢; O B, provided that (for a given set of initial queries of interest) for
any answer constraint d of ¢; O B, D E d — cholds, i.e. ¢isredundant in d. Clearly
this case is covered by our definition. However, the similarities between this chapter
and [73] end here. In [73], refinement, together with two other operations, is used
to define an optimization strategy which manipulates exclusively the constraints of
the clauses and which is devised to reduce the overhead of the constraint solver in
presence of the fixed left-to-right selection rule, thus providing a kind of optimization
technique totally different from the one here considered.

Example 6.4.2 (part 4) By performing a constraint replacement of

Len > 0 A Len = Len’+1 A Average*Len = Amount*Value+Sum~’

by

Len > 0 A Len = Len"+1 A Averagex*Len = Amount*Value+Sum” A Len” > 0
we can add the constraint Len’ > 0 to the body of clause ¢8, thus obtaining the clause

c9: avl ([(Currency,Amount),J|Rest], Rates, Average, Len) +«
Len > 0 A Len = Len"+1 A Average*Len = Amount*Value+Sum~”
AN Len” > 0 O
exchange rates(Rates) .
member ((Currency, Value), Rates),
weighted sum([J|Rest], Rates, Sum”),
len([J|Rest], Len”).

As we said before, the applicability conditions for the constraint replacement oper-
ations are satisfied because each time that the query len([J|Rest],Len’) succeeds in
the current program the variable Len’ is constrained to a value greater than zero. O

We are now ready for the folding operation. Intuitively, this operation can be seen
as the inverse of unfolding. Here, we take advantage of this intuitive idea in order
to give a different formalization of its applicability conditions which we hope will be
more easily readable than those existing in the literature.

As in [96], the applicability conditions of the folding operations depend on the his-
tory of the transformation, that is, on some previous programs of the transformation
sequence. Recall that a transformation sequence is a sequence of programs obtained
by applying some operations of unfolding, clause removal, splitting, constraint re-
placement and folding, starting from an initial program Fy which is partitioned into
Pnew a,nd Po]d.

As usual, in the following definition we assume that the folding and the folded
clause are renamed apart and, as a notational convenience, that the body of the
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folded clause has been reordered so that the atoms that are going to be folded are
found on its left hand side.

Definition 6.4.9 (Folding) l.et F,..., P, 7 > 0, be a transformation sequence.
et also

cl: Aecy 0K, J bea clause in P,

d:D < cp O H be a clause in P,.,,.
If ¢, O K is an instance of true O H and e is a constraint such that Var(e) C
Var(D) U Var(cl), then folding R in ¢l via e consists of replacing ¢l by

't Ae—cy NeO D, J

provided that the following three conditions hold:

(CLP1) (i) “If we unfold D in ¢!’ using d as unfolding clause, then we obtain cl
back” (modulo ~),
or, equivalently, ) )
(i) DE Fvainm cahelen & Ty, i cah(H=K)
(CLP2) “d is the only clause of P,., that can be used to unfold D in cl'”,
that is,
there is no clause b: B+ ecg O L in P,.,, such that b #dand ca Ae N (D=
B) A cp is D-satisfiable.
(CLP3) “No self-folding is allowed”, that is

(a) either the predicate in A is an old predicate;
(b) or ¢l is the result of at least one unfolding in the sequence Py, ..., P, O

Here, the constraint e acts as a bridge between the variables of d and ¢l. For this
reason in the sequel we will often refer to it as bridge constraint.

Conditions CLP1 and CLP2 ensure that the folding operation behaves, to some
extent, as the inverse of the unfolding one; the underlying idea is that if we unfolded
the atom 1) in ¢’ using only clauses from P,.,, as unfolding clauses, then we would
obtain ¢l back. In this context condition CLP2 ensures that in P,.,, there exists no
clause other than d that can be used as unfolding clause.

We now show that CLP1(i) and CLP1(ii) are equivalent to each other. First
notice that the folding and the folded clause are assumed to be standardized apart,
so H has no variables in common with A, ¢4, K and J. From this and the fact that
cy O K is an instance of true O I':L it follows that each solution of ¢4 can be extended
to a solution of ¢4 A (I':f = R’) Hence

el Aecy O R’,j ~ Ay A(ﬁ:R’)D R’jj

Now, because of the constraint H = K, in the ths of the above formula, we also have
that ) ) o
ol ~ A—ca N(H=K)O H,J (6.1)

On the other hand, if we unfold ¢/’ using d as unfolding clause, as a result we get the
following clause:

cl”:AecA/\e/\(D:D')/\c'DDI':f',j
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where d’' : ) < ¢/, O H' is an appropriate renaming of d. Here, by the standardiza-
tion apart and the fact that Var(e) C Var(D)UVar(cl), the variables of ¢p, H which
do not occur in ), do not occur anywhere else in this clause, so, by making explicit

(D = D), we can identify ¢, with ¢p and H’ with H. Therefore we have that

" ~ Ac—cy NeANepOH,J. (6.2)

From (6.1) and (6.2) it follows immediately that

cl” ~ el iff 37Va,r(A,j,f—7) ca NelNep 37Va,r(A,.7,sz) ca N (IT:[ = [\7)
)

This proves that condition CLP1(i) is equivalent to CLP1(ii). Of course, the former
is more useful when we are transforming programs “by hand”, while the latter is more
suitable for an automatic implementation of the folding operation.

Here it is worth noticing that the folding clause is always found in Fy and usually
does not belong to the “current” program, therefore in practice “undoing” a fold via
an unfolding operation is usually not possible.

Finally, we should mention that the purpose of CLLP3 is to avoid the introduction
of loops which can occur if a clause is folded by itself. This condition is the same one
that is found in Tamaki-Sato’s definition of folding for logic programs.

Example 6.4.2 (part 5) We can now fold
exchange rates(Rates), sum([J|Rest|,Rates,Sum’), len([J|Rest], Len’)
in c9, using c2 as folding clause. In this case, the bridge constraint e has to be
XS = [J|Rest] A RATES = Rates A LEN = Len’ A AV = Sum’/Len’

In the resulting program, after cleaning up the constraints, the predicate avl is defined
by the following clauses:

c7: avl ([(Currency,Amount)] ,Rates, Average, 1) <+
Average = Amount*Value O
exchange rates(Rates),
member ((Currency, Value), Rates).
c10: avl([{Currency,Amount),J|Rest], Rates, Average, Len) < Len > 0 A
Len = Len“+1 A AveragexLen = Amount*Value+(Average’*Len’) A Len” > 0 I
avl([J|Rest], Rates, Average’,Len”),
member ((Currency, Value), Rates).

Notice that, because of this last operation, the definition of avl is now recursive and
it needs to traverse the list only once. Here, checking CLP1 is a trivial task: what we
have to do is to unfold ¢10 using c2 as unfolding clause, and check that the resulting
clause is ~-equivalent to c9.

Finally, in order to let also the definition of average enjoy of these improvements,
we simply fold
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weighted_ sum(Xs,Rates, Sum),len(Xs,Len) in the body of c1, using c2 as folding
clause. The bridge constraint e is now

Xs = XS A RATES = Rates A AV=Av A LEN = Len

And the resulting clause is, after the cleaning-up
cl1l: average(List, Av) <+ Len>0 0O avl(List, Rates, Av, Len).

Again, we could eliminate the constraint Len > 0 in the body of c11, by applying
a constraint replacement operation. In any case, the transformed version of the
program AVERAGE, consisting of the clauses c11, c7, <10 together with the definition
of member, contains a definition of average which needs to scan the list only once. O

The transformation system given by the previous five operations is correct w.r.t.
~, that is any transformed program together with a generic query @) will produce
the same answer constraints of the original one. This is the content of the following
result, which follows from the more general one contained in Section 6.5.

Corollary 6.4.10 (Correctness) If Fy, ..., P, is a transformation sequence then

(a,) PO ~ Pn-
(b) The least D-models of Py and P, coincide.

Proof. Statement (a) is proven in Section 6.5 as a Corollary of Theorem 6.5.4. The
fact that (a) implies (b) is proven in [42]. O

Invariance of the applicability conditions

As previously mentioned, we often substitute a clause in a program by an ~ equivalent
one in order to clean up the constraints. The correctness of this operation wrt the
/2. congruence is stated in Lemma 6.3.7. We now show that this operation is correct
also in the sense that it does not affect the applicability and the result (up to ~) of
the previously defined operations. This is the content of the following proposition.

Proposition 6.4.11 lLet Fy, ..., P, and Py, ..., P* be two transformation sequences,
such that, for 2 € [0...n], P, ~ P*. If P,y is a program obtained from P, via a
transformation operation, then there exists a program P~ _, which can be obtained

from P via the same transformation operation and such that

Pn+1 ~ P’T+1

it

Proof. In case that the operation used to obtain P,y from P, was either an un-
folding, a clause removal, a splitting, or a constraint replacement, this result follows
immediately from the operation’s definitions, so we only have to take care of the
folding operation. We adopt the same notation used in Definition 6.4.9, so we let

~cl: A<y O K, J be the folded clause, in P,,

~d: D« ecpO H be the folding clause, in P,..,(C Fo).

- ¢ be the bridge constraint, Var(e) C Var(D) U Var(cl),



106 Chapter 6. Unfold/Fold Transformations of CLP Modules

—el': Aecq A eO D, J be the result of the folding operation.
Moreover, let
el AT O R™*,.J* be the clause of P> corresponding to ¢l in P,,
~d* 2 D* ¢ O H* be the clause of P corresponding to d in P,
Now let e¢* be a constraint such that Var(e*) C Var(D*)U Var(cl*) such that
el AT A e D D J*~cl's Aecy ANeD D,J
We now only have to show that if the applicability conditions of the folding operation
are satisfied (by ¢/, d and ¢) in P,, then they are also satisfied (by ¢/*, d* and ¢*) in

P>. To this end, the one delicate step is taken care of by the following Observation.

Observation 6.4.12 Referring to the program P,, the clauses ¢l and d, and the con-
straint e.

cy O K if an instance of true O H and (CLP1) holds iff ¢4 O K is an instance
of ep O H and (CLP1) holds.

Proof.

“If”. This is trivial, as if ¢4 O K is an instance of ¢p O H then it is also an
instance of true 0 H.

“Only if”. The discussion after Definition 6.4.9 shows that, if ¢4 O K is an
instance of true O H and (CLP1) holds, then we have the following equivalences:

cl:AecADf\] ~

Aees N(H=RK)OK, ] ~

Ac—es N(H=K)OH,J ~
O H,

H,
Accs Ne A cep J.

This implies that ¢4 O A is an instance of ¢4 A e A ¢p O H, which in turn is by
definition an instance of ¢p O H. This concludes the proof of the Observation. O

This Observation shows that there is no loss of generality in modifying the applic-
ablh‘ry conditions of the folding operation Definition 6.4.9 by replacing the condition

“ey O K is an instance of true O H” for “ cy O K is an instance of cp O H. Now,
from the definitions of instance and of ~ it is immediate to verify that the following

facts hold:

(1) feq O K is an instance of ¢p O H then ¢, O K* is an instance of ¢ O H*.
(2) if (CLP1)A(CLP2) A (CLP3) ave satisfied (by ¢, d and ¢) in P,, then they
are also satisfied (by ¢/*, d* and ¢*) in P*.

This concludes the proof of the Proposition. O

6.5 A transformation system for CLP modules

Corollary 6.4.10 shows the correctness of the transformation system when viewing
each CLP program as an autonomous unit. However, as pointed out in the introduc-
tion, an essential requirement for programming-in-the-large is modularity: a program
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should be structured as a composition of interacting modules. In this framework Co-
rollary 6.4.10 falls short from the minimal requirement since it does not guarantee
that a module P will be transformed into a congruent one P’.

Transforming CLLP modules requires then a strengthening of (some of) the ap-
plicability conditions given in the previous section. In what follows, we discuss such
modifications considering the various operations one by one. Recall that the open pre-
dicates of a module M are the ones specified on Op(M). Similarly, in the sequel we
call open atoms those atoms whose predicate symbol belongs to Op(M). Moreover,
we assume that the transformed version of a module has the same open predicates as
the original one.

Unfolding

In order to preserve the compositional equivalence, for the unfolding operation we
need the following additional applicability condition:

(O1) The unfolding cannot be applied to an open atom.

This condition is clearly needed, for instance, consider the module M consisting of
the single clause {c1: p <+ q.} and where Op(My) = {q}. Since My contains no
clause whose head unifies with q, unfolding q in c1 will return an empty module
M; = . Obviously My and M, are not observationally congruent.

Clause Removal

This operation may be safely applied to modules without the need of any additional
condition.

Splitting

Being closely connected to the unfolding operation, the splitting one requires the
same kind of precautions when is applied to a modular program. Namely we need
the following condition:

(02) The splitting operation may not be applied to an open atom.

The example used to show the need for condition O1 for the unfolding operation can
be applied here to demonstrate the necessity of O2.

Constraint Replacement

This operation is the most delicate one: in order to apply it to modules we need to
restate completely its applicability conditions. As a simple example showing the need
of such a change, let us consider the following module My:

cl: p(X) + true 0O q(X).
q(a).



108 Chapter 6. Unfold/Fold Transformations of CLP Modules

where Op(Mg) = {q}. The only answer constraint to the query q(X) in My is X = a.
Therefore, if we refer to the applicability conditions of Definition 6.4.8, we could add
the constraint X = a to the body of c1 thus obtaining M;:

c2: p(X) +X=a 0Oq(X).
q(a).

Once again My and My are not congruent. In fact, for N = ({q(b).},{q}), the query
p(b) succeeds in My & N and fails in My @& N.

Definition 6.5.1 (Constraint Replacement for Modules) letcl : H ¢, OB
be a clause of a module M and let ¢y be a constraint. If

(03) for each derivation true O B Y g0 D such that D is either empty or contains
only open atoms, we have that

H%C]/\dmﬁ ~ H%CQ/\(]DIM)

then replacing ¢; by ¢y in ¢ consists in substituting ¢l by H ¢ ¢, O Bin M. O

In order to compare this definition with the corresponding one for non-modular
programs notice that the applicability conditions of Definition 6.4.8 can be restated
as follows. We can replace ¢; with ¢y in the body of ¢l : H + ¢; O B if, for each

successful derivation true O B -5 d O we have that
HecoANdO ~ Heecyg ANdO

Now it is clear that the difference lies in the fact that here we cannot just refer to
the successful derivations true 0 B Lo d O , but we also have to take into account
those partial derivations that end in a tuple of open atoms, whose definition could
eventually be modified. Tt follows immediately that when the set of open atoms is
empty, Definitions 6.4.8 and 6.5.1 coincide, while if Op(M) # @ then this definition

is more restrictive than the previous one.

Folding

Finally, we consider the folding operation. In order to preserve the compositional
equivalence the head of the folding clause cannot be an open atom. This is shown by
the following simple example. Consider the initial module Mjy:

cl: p <q.
c2: r <q.
where we assume Op(My) = {p} and M,.,, = {p < q}. Since r is an old atom, we

can fold q in ¢2 using c1 as folding clause. The resulting module M; is

c3: p <q.
c4: r <p.
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Again My and My are not observationally congruent. Indeed, if we compose them
with the module N = ({p.},{p}), we have that the query r succeeds in My & N,
but fails in My @ N. Since the new predicates are the only ones that can be used
in the heads of folding clauses, we can express this additional applicability condition
for folding as follows:

(O4) No open predicate is also a new predicate.

It is worth noticing that open atoms may still be folded. Below (Example 6.4.2,
part 6), we report an example of such a case.

Using the additional applicability conditions introduced above, we can define now
the transformation sequence for CLLP modules (for short, modular transformation
sequence).

Definition 6.5.2 (Modular transformation sequence) lLet My = (Fy, Op(My))

be a module and Fy, ..., P, be a transformation sequence. We say that Mg, ..., M,
is a modular transformation sequence iff M; = (P,,Op(My)) for i € [0,n] and the
conditions O1...04 are satisfied by all the operations used in Py, ..., P,. O

As expected, for a modular transformation sequence we can prove a correctness
result stronger than the one contained in Corollary 6.4.10. Indeed, the system trans-
forms a module into a congruent one.

This result is based on the following Theorem which contains the main technical
result of this chapter and shows that any modular transformation sequence preserves
the resultants semantics.

Theorem 6.5.3 let My, ..., M, be a modular transformation sequence. Then
o O(My)=0(M,).
Proof. See the Appendix. O

From previous Theorem and the correctness result for the resultants semantics we
can now derive easily the correctness of a modular transformation sequence.

Theorem 6.5.4 (Correctness of the modular transformation sequence) et

My, ..., M, be a modular transformation sequence, then
MO N Mn
Proof. Immediate from Theorem 6.5.3 and Corollary 6.3.10. O

In other words, for any module N such that My & N is defined, M, & N is also

defined® and a generic query has the same answer constraints in My@ N and M, & N.

From previous result we also obtain Corollary 6.4.10 of previous Section.

3The fact that M, @& N is also defined follows immediately from the fact that M, and M,, contain
definitions for the same predicate symbols.



OCHO

110 Chapter 6. Unfold/Fold Transformations of CLP Modules

Corollary 6.4.10 If F,, ..., P, is a transformation sequence, then,
FPo~ P,.

Proof. Note that when Op(Fy) is empty, conditions O1 ... O4 are trivially satisfied
by any transformation sequence. Since & can be seen as the particular case of =.
applied to modules with an empty set of open predicates, the thesis follows from

Theorem 6.5.4. O

Example 6.4.2 (part 6) Program AVERAGE can be used in a modular context.
Indeed, if we consider that the exchange rates between currencies are typically fluc-
tuating ratios, it comes natural to assume exchange rates as an open predicate
which may refer to some external “information server” to access always the most up-
to-date information. In this context, it is easy to check that all the transformations
we performed satisfied O1...04. Therefore Theorem 6.5.4 guarantees that the final
program will behave exactly as the initial one, even in this modular setting. O

6.6 From LP to CLP

It is well-known that pure logic programming (I.P for short) can be seen as a par-
ticular instance of the CLLP scheme obtained by considering the Herbrand constraint
system. This is defined by taking as structure the Herbrand universe and interpreting
as identity the only predicate symbol for constraints “=". So it is natural to expect
that an unfold/fold transformation for P can be embedded into one for CLP. Indeed,
in this Section we show that the transformation system we propose is a generalization
to the CLP (and modular) case of the unfold/fold system designed by Tamaki and
Sato [96] for LLP, which is described in chapter 1. As a consequence, conditions O1
and O4 can be used also in the [LP case to transform a module into a congruent one.

Since clause removal, splitting and constraint replacement are new operations
which were not in [96], we call now LP transformation sequence a sequence of P
programs Py, ..., P,, in which Fy is an initial program and each P,y , is obtained

from P; either via an unfolding or via a folding operation®.

Concerning the unfolding operation, it is easy to see that Definition 6.4.3 is the
CLP counterpart of Definition 3.2.3. In fact, an LP clause is itself a CLP rule
(with an empty constraint) and well known results ([64]) imply that two terms s
and t have an mgu iff the equation s = t is satisfiable in the Herbrand constraint
system. Therefore, given a logic program P, we can unfold P according to Definition
3.2.3 iff we can unfold P according to Definition 6.4.3. Clearly, the results of the
two operations are syntactically different, since substitutions are used in the first
case whereas constraints are employed in the second one. However, again by using
standard results of unification theory, it is easy to check that the different results are
~ equivalent.

*However, we should mention that in [96] also a more general replacement operation is taken into
consideration, but this operation is beyond the scope of this chapter.
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On the other hand, when considering the folding operation, the similarities between
Definitions 3.2.5 and 6.4.9 are less immediate. Therefore we now formally prove that,
whenever the folding operation for LLP programs is applicable also the folding oper-
ation for CILP programs is, and the result of this latter operation is ~-equivalent to
the result of the operation in LLP. This is summarized in the following.

Theorem 6.6.1 If Fy is a logic program and Fy,..., P, is an [P transformation
sequence then there exists a CLP transformation sequence Py, ..., P* such that, for

1 € 10,n], P~ P

Proof. In order to simplify the notation, we now define a simple mapping from I.P
clanses to clanses in pure CLP?. Tet ¢l : po(fg) — (7f~1)7 .. .7pn(t~n) be a clause in
LP. Then u(el) is the CLP clause

p()(.’;?o) — .’;70 = tN() A .’;71 = tN] Ao A ’;'77 = 7?77’ O 1 (’;'1)7 . -7pn(:;7n)7

where g, ..., %, are tuple of new and distinct variables. Obviously u(¢l) ~ ¢l for any
clause ¢l. Therefore it suffices to prove that if Py, ..., P, is a transformation sequence
of logic programs, then u(Fy),...,u(P,) is a transformation sequence in CLP. The
proof proceeds by induction on the length of the sequence. For the the base case
(n = 0) the result holds trivially, so we go immediately to the induction step: we
assume that Fy, ..., P,y is a transformation sequence in LP, that u(Fp),...,u(P,)
is a transformation sequence in CLP, and we now prove that u(Fo), ..., u(P,11) is a
transformation sequence in CL.P as well.

If P,yq is the result of unfolding a clause ¢l of F;, then it is straightforward to
check that by unfolding p(el) in w(P;) we obtain u(Piy1) (modulo ~).

Now we consider the case in which P,y is the result of a folding operation (applied
to P,). We prove the thesis for the simplified situation where i, K and J consist
each of a single atom. The extension to the general case is straightforward. let

d : a(3) < b(1) be the folding clause, in P,.,,.
Since we are assuming that the applicability conditions of Definition 3.2.5 are satisfied,
by F1 the folded clause (in P,) can be written as follows:
el : e(it) < b(ir), d(v).
the result of the folding operation is then
e’ e() + a(3T),d(v).
which is a clause in P, 4.
By translating the folding and the folded clause in CLLP, we obtain
p(d) = d*:a(@) =35 ANg=10Db%),
plel) = e ce(Z)—2=aNw=1r A k=100b(w),dk).
Where 7, g, z, w and k are tuples of new and distinct variables.
Now, let e be the following constraint

e = I =8T

the result of the folding operation in CLP is then

5 Pure CLP programs are CLP programs in which the atoms in the clauses, apart from constraints,
are always of the form p(#), where # is a tuple of distinct variables.
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el e(2)e—Z=aANb =11 A k=oA7=35r0 (1("7')7(](];)
It is straightforward to check that p(el’) ~ ¢l™. Now, it is also clear that 2 = 4 A W =
ir Ak =00 b(w) is an instance of true O b(F), so in order to prove the thesis we
now need to verify that if d, ¢l and 7 satisfy F1, F2 in P, then d*, ¢/* and e satisfy
CLP1 in p(P,). Here the structure D is the Herbrand structure, whose domain is
the Herbrand universe and where “=" is interpreted as the identity.

Now the condition CLP1is D J.:; crp & 55 Crignt
where ¢z 18 2277,/\17):{7’/\];:77/\."7::(57'/\.”7::(5/\1]:75~
and ¢pigps 18 7?:77,/\17):{7'/\];:77/\1]:17)
Tn both sides of the formula we find the equations w = it, k = o, 7 = 57, where w, k, &
are tuple of fresh variable and are existentially quantified, hence we can simplify

CLP1 to

DE J:; 2=uAsi=3TAg=1 ¢ .5 Z=0Ay=1Ir (6.3)
Recall that, when considering the Herbrand structure, # is a solution of a constraint
¢ if ¥ is a grounding substitution such that Dom () = Var(c) and D | ¢,
We now show that for each solution 1 of one side of (6.3) there exists a solution
n" of the other side of (6.3) such that n|;; = n’|: ;; this will imply the thesis.
We now prove the two implications separately:
(< ). Let 1 be a solution of 2 = @ A §j = i7. We assume that n is minimal, in
the sense that if / is a variable not occurring in 2 = @ A § = fr, then [ & Dom(n).
Since, by standardization apart, Dom(7) N Ran(7) = (), we have that Dom(n) N Dom(7) =
). We can extend n to ' Dom(n’) = Dom(n) U Dom(7): for each | € Dom(7), we
let

In’ be equal to I7n. (6.4)

n" is now also a solution of the left hand side of (6.3). In fact
sn'=3srn  (by (6.4))
=371’ (because 1’ is an extension of 7).
Moreover
gn’ =iy’ (because n’ is an extension of 5, and 7 is a solution of y = #7)

=1y (by (6.4)).

Since 1’ is an extension of 1, we have that n|; ; = n

I|_
Z7. :
t. Again, we assume 7 to be

(—). Let n be a solution of Z=u A 3=357 ANy
minimal (in the sense above, i.e. Dom(n) = Var(Z =4 AN §=31 A y=1)). Observe
that Dom(n) N Ran(7) = Var(st). We now extend i to " in such a way that Dom(n)
encompasses the whole Ran(t) = Var(tT)U Var(st). Let I be the tuple of variables

o

given by Var(t)\Var(3), by F2 we have that 7 is a tuple of distinct variables.
Moreover, the variables in [T don’t occur anywhere else in the above formulas. So,
for each I; € [, we can let

;71" be equal to I;n. (6.5)

Since i is already a solution of § = §7 and 7 is an extension of 1, by (6.5) we have
that
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try = in.
Since 7 is a solution of § = £, 1’ is then a solution of § = 7, and hence of the whole

LLHS of (6.3), which concludes the proof. O

Theorem 6.6.1 allows us to apply the results of the previous Section also to the
Tamaki-Sato schema, thus obtaining a a transformation system for I.LP modules. The
following Corollary show the correctness result for this case. Here we consider as
[.LP module a logic program P together with a set of predicate symbols 7. Module
composition and the related notions are the same as in the previous sections. Given
two logic programs P, and P, the concept of observational equivalence =" is defined
as follows:

o P, =P Py iff, for any query Q and for any 7,5 € [1,2], if @ has a computed
answer 1; in the program P; then () has a computed answer ¥, in the program

P; such that Qv; = Q5.

Therefore, in the LLP context, the concept of module congruence is defined as follows.
Given two modules My and Ma,

o My =I'P M, iff Op(My) = Op(M,) and for every module N such that M; & N
and My @& N are defined, My & N ~'"P My @& N holds.

Corollary 6.6.2 Let My : (Py,m) be a logic programming module, P, ..., P, be
an LP transformation sequence and for i € [1,n] let M, be the module (P, ). If
conditions O1 and O4 are satisfied then M, %fP M,.

Proof. Immediate from Theorems 6.6.1 and 6.5.4. O

6.7 Conclusions

Among the works on program’s transformations, the most closely related to this
chapter are Maher’s [69] and the one of Bensaou and Guessarian [14].

Maher considers several kind of transformations for deductive databases modules
with constraints (allowing negation in the bodies of the clauses) and refers to the
perfect model semantics. However, the folding operation proposed in [69] is quite
restrictive, in particular it lacks the possibility of introducing recursion. Indeed, for
positive programs, it is a particular case of the one defined here. Moreover, our
notion of module composition is more general than the one considered in [69], since
the latter does not allow mutual recursion among modules.

Recently, an extension of the Tamaki-Sato method to CI.P programs has also been
proposed by Bensaou and Guessarian [14], yet there are some substantial differences
between [14] and our proposal.

Firstly, since in an unfold /fold transformation sequence we allow more operations,
we obtain a more powerful system. For instance, the transformation performed in

5We assume here that generic mgu’s are used in the STD derivations. Tf only relevant mgn’s were
allowed, then the syntactic equality should be replaced by variance.
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FExample 6.4.2 is not feasible with the tools of [14]. On the other hand, since in [14]
the authors define also a goal replacement operation, there exist also some transform-
ation which can be done with the tools of [14] and not with ours. However, such
a replacement operation cannot be fitted in a unfold/fold transformation sequence,
in particular no folding is allowed when the transformation sequence contains a goal
replacement. For this reason a goal replacement operation as defined in [14] has to be
regarded as an issue which is orthogonal to the one of the unfold /fold transformations,
and which is also beyond the scope of this chapter.

Secondly, the semantics they refer to is an extension to the CILP case of the C-
semantics ([29, 40]). Such a semantics characterizes the logical consequences of the
program on D-models, but does not allow to model answer constraints. For example,
the C-semantics identifies the programs { p(X,Y) <« X=a,Y=b0O., p(X,Y).} and
{ {p&,Y). } which have different answer constraint for the goal p(X,Y), and con-
sequently are not identified by the answer constraint semantics in [43]. Since the C-
semantics can be obtained as the upward closure of the answer constraint semantics,
the result on the correctness of the unfold /fold system of [14] is a particular case of our
Corollary 6.4.10. Moreover, we believe that the answer constraints semantics provides
a better reference semantics for transformation systems, since answer constraints are
the most natural properties that one would like to preserve while transforming pro-
grams.

A third relevant difference is due to the fact that since modularity is not take into
account in [14], the system introduced in that paper does not produce observationally
congruent programs. As pointed out in the introduction, this issue is particularly
relevant for practical applications.

Finally, one last improvement over [14] is that of the applicability conditions we
propose are invariant under ~-equivalence (Proposition 6.4.11), while the ones in
[14] are not: this means that in some cases the folding conditions of [14] may not be
satisfiable unless we appropriately modify the constraints of the clauses (maintaining
~-equivalence).

To conclude, the contributions of this chapter can he summarized as follows.

We have defined a transformation system for CI.P based on the unfold /fold frame-
work of Tamaki and Sato for logic programs [96]. Here, the use of CLP allowed us to
define some new operations and to express the applicability conditions for the folding
operation without the use of substitutions. Moreover, our definition of folding em-
phasizes its nature of being a quasi-inverse of the unfolding. We hope that this will
provide a more intuitive explanation of its applicability conditions. The system is
then proven to preserve the answer constraints and the least D-model of the original
program.

A definition of a modular transformation sequence is given by adding some further
applicability conditions. These conditions are shown to be sufficient to guarantee the
correctness of the system w.r.t. the module’s congruence. This means that the
transformed version of a CLLP module can replace the original one in any context,
yet preserving the computational behaviour of the whole system in terms of answer
constraints. As previously argued, this provides a useful tool for the development of



6.8. Appendiz 115

real software since it allows incremental and modular optimizations of large programs.

Finally, the relations between transformation sequences for CILP and I.P have
been discussed. By mapping logic programs into CL.P programs we have shown that
our transformation system is a generalization to CLLP (and to modules) of the one
proposed by Tamaki and Sato [96]. This relation allows us to prove that, under
conditions O1 and O4, the system by Tamaki and Sato transforms a I.LP module into
a congruent one.

In the literature we also find less related papers presenting methods which focus
exclusively on the manipulation of the constraint for compile-time [73] and for low-
level local optimization (in which the constraint solving is partially compiled into
imperative statements) [56, 54]. These techniques are totally orthogonal to the one
discussed here, and can therefore be integrated with our method. On the other
hand, some strategies which use transformation rules for composing complex (pure)
logic programs starting from simpler pieces have been presented in [62] and further
discussed in [77]. Also these strategies could easily be extended to CLP and integrated
with our transformation rules.

6.8 Appendix

In this Appendix we first give the proof of Theorem 6.5.3 which shows that any
modular transformation sequence preserves the resultants semantics. The proof, quite
long an tedious, is split in two parts (partial an total correctness) and is inspired by
the one given in [57].

Throughout the Appendix we will adopt the following.

Notation We refer to a fixed module
Mo = (Fo, Op(My))

and to a fixed transformation sequence
My... M,.

Moreover, for notational convenience, we set,

m = Op(M). .

Partial correctness

Intuitively, a transformation is called partially correct if it does not introduce new
semantic information. In our case, partial correctness corresponds to the inclusion
O(My) O O(M,) of Theorem 6.5.3. Before proving such an inclusion we need to
establish some further notation.

Definition 6.8.1 We say that two trees T and T” are similar if they are partial trees
of the same atom, and they have the same resultant, modulo ~. O

This is (obviously) an equivalence relation, so we can also say that two trees
belong to the same equivalence class iff they are trees of the same atom, and their
resultants are equal, modulo ~.
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The next two Lemmata outline some simple properties of proof trees which will
be useful in the sequel. The first one states that, given a tree T', we can replace a
subtree S with a similar subtree S, without altering the main properties of T'.

Lemma 6.8.2 let T be an w-tree, S be a subtree of T, and S’ be a partial proof
tree similar to .S and such that the clauses of S” do not share variables with 7'. Then
the tree T’ obtained from T by replacing S for 5" is a 7-tree and is similar to T.

Proof. Straightforward. O

Lemma 6.8.3 Let T be a partial proof tree of A; let also 7" be the tree obtained
from T by replacing A with A" in the lhs of the label equation of the root node. If A’
and A have the same relation symbol, and A’ is variable-disjoint from T, then T" is
a partial proof tree of A’.

Proof. Obvious. O

In other words, a partial proof tree for A is basically also a partial proof tree
for any A’ that has the same relation symbol of A. Of course this Lemma gives no
guarantee that after the substitution of A with A’ the global constraint of the tree
will still be satisfiable.

We need a couple of final, preliminary results.

Remark 6.8.4 let P be a program and A « d D D be an resultant. Equivalent are

e There exists a derivation true 0 AL @ O [V suchthat A <~ d O D ~ A « d’ 0 D'
e There exists a partial proof tree of Ain P whose whose resultant is A < d” 0O D"
and such that A« d D D~ A« d" 00 D"

Proof. Straightforward.
O

Lemma 6.8.5 ([42]) Let P be a program, if, for distinct 7,7 € [1, k], there exists a
derivation
true O Ai«P» c; O F;

and Var(¢; O ]57) N Var(e; O E) C Var(A;) N Var(A;) then there also exist a de-
rivation

trueDA17...7Ak«Pf>c1 AN .. AN O ﬁh...,Fk.

O

We can now state the partial partial correctness result the transformation system.
Proposition 6.8.6 (Partial correctness) If O(My) = O(M,) then O(M;) O O(M;11)

Proof. To simplify the notation, here and in the sequel we refer to Py, ..., P, rather
that to My,..., M,.

In case P,y was obtained from P; by unfolding or by a clause removal operation
then the result is straightforward, therefore we need only to consider the remaining
operations.
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We now show that if there exists an m-tree T4 of atom A with resultant R in Py,
then there exists also m-tree of A with resultant R in P; (modulo ~). By Proposition
6.3.17, this will imply the thesis. The proof is by induction on the size of a proof tree,
which corresponds to the number of nodes it contains. Let ¢’ be the label clause of
the root node of Ty, and let us distinguish various cases.

Case 1: ¢’ € P..

This is the case in which clause ¢’ was not affected by the passage from P, to Py;.
The result follows then from the inductive hypothesis: For each subtree S of T (in
Piy1) there exists a similar subtree S” in P;, so the tree obtained by replacing each S
with S in T4 is an m-tree in P; similar to Ty.

Case 2: ¢/’ is the result of splitting.
Let ¢l be the corresponding clause in P;, that is, the clause that was split. There is
no loss in generality in assuming that the atom that was split was the leftmost one.
Therefore the situation is the following:

el Ag+—cy O Ay, .. A,

el Ag=ca N(A=B)Aeg D AL A,
Where B+ cg 0 D is one of the splitting clauses, and has no variable in common
with ¢l. Since by condition O2 no open atom can be split, we have that A; may
not belong to the residual of T4, therefore there exist a subtree T4, of Ty which is
attached to A;. Tet (' < ¢ O F be the label clause of the root node of T4,. With
this notation the global constraint of Ty has the form

(A=A ANeaN(Ar=B)ANeg AN(Ar=C) Nee A ... (6.6)

Now €'+ cc O F is also one of the clauses used to split Ay; by the applicability
conditions of the splitting operation either €' and B are heads (of renamings) of
the same clause, or €' = B A ¢o A ¢p is unsatisfiable. Since (6.6) is satisfiable, we
have that €' and B must be renamings of the heads of the same clause. Since by
standardization apart, the variables in ¢g and in B may not occur anywhere else in
Ty, as far as global constraint of T4 is concerned, the expression (A; = B) A ¢p
is already implied by the expression (A; = C) A ¢¢, therefore we can eliminate
(Ay = B) A ¢ from the global constraint of T4, and obtain a tree which is similar
to it; in other words, by replacing the clause clause ¢’ with ¢l in the label of the root
of Ty, we obtain a tree T’} which is similar to 7.

By inductive hypothesis, for each subtree T4, of T4 (and T}) there exists a tree
TAQi in Pyq which is similar to T'4,. We can assume without loss of generality that
the clauses in each T3 do not share variables with those in 7'},

Finally, let 7% be the tree obtained from T} by substituting each subtree T4, with
TAQi7 by LLemma 6.8.2 we have that 7% is similar to T}, and therefore to T4. Since T3

is an m-tree of A in P;, the result follows.

Case 3: ¢/’ is the result of a constraint replacement. From now on, let us call internal
constraint of a tree T', the conjunction of all the constraints in the label clauses of
T, together with the label equations of the subtrees of T'. So the internal constraint
is obtained from the global constraint by removing from it the label equation of the
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root node of T.
Now, let

o' A O A, . A, and

el A+cO Ay, ..., A,. Where ¢l is the clause to which the replacement was
applied. Let also T4, ,..., Ty , be the subtrees of T4y (which we suppose attached
to Ay,..., Anr), €a,5. .., ca, be their internal constraints and ﬁ%h R, ﬁAn/ be their
residuals. With this notatioﬁ, the resultant of T4 is ’

A(—(A:AO)/\CI/\CA1 VAN /\CAn' O ﬁA”---a'&AnmAn’—l—h---aAn

By Lemma 6.8.4, the existence of T4, ,..., T4 , implies that for 7 € [1,n/] there exists

. . P ~ . . . .
a derivation true O A; ~2' ¢y, O Fy, (modulo ~). Since by inductive hypothesis each

n!

subtree of T4 has a similar subtree in P;, Remark 6.8.4 also implies that, for 7 € [1, /]
there exists a derivation which is equal (modulo ~) to

P; I
true O A, ~2 ca, O Fy,.

By combining these derivations together (Remark 6.8.5) we have that there exists a
derivation

true O A17...7An&EA1 AN oA CAnI O ﬁA17---7ﬁAnmAn’—l—h---aAn- (67)
Now, since ¢l € P; it follows that there exists a derivation
true O A 23 (A=Ag) ANeNea, N ooo Ay, O ﬁA”...7ﬁAn,,An/+17...7An.

From Remark 6.8.4 it follows that there exists an m-tree S4 of A in P whose resultant
1s

A %(A = AO) ANc A CA, AN oA CA_, O FA”---aFAnmAn’—l—h---aAn-
From (6.7) and the applicability conditions for the replacement operations it follows
that the resultant of 54 is ~-similar to the one of T4. Hence the thesis.

Case 4: ¢/’ is the result of folding.
et

el Ag—ca O By, . B, A, ..., A, be the folded clause (in P;)

-d: By+cg O By,..., B, be the folding clause (in P,..,),
so we have that

e’ Ag—ca AN eD By, Ay, ..., A, is the label clause of the root node of Ty;
et also

- Bo, Ay, ..., A, be the atoms of ¢’ that have an immediate subtree (in Piiy)
attached to in T)y; this choice causes no loss of generality, in fact, by O4, By cannot
be an m-atom, and hence it cannot be part of the residual of the root node of T'y.

- Auigr, ..., A, is then the residual of the root node.
So let

- Tgy,Ta,,...,Ta , be the immediate m-subtrees of T)4.
By the inductive ‘hyp(’)t‘hesis7 there exist m-trees
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-Tg, T - Tﬁ\n/ in P which are similar to Tg,, Ta,,..., T4 ,.
Since O(Fy) = O(P;), from Proposition 6.3.17 it follows that there exists an m-tree
Sp, of By in Py which is similar to T (in P;). Becanse of the condition CLP2, the
label clause of the root of Spg, is an appropriate renaming of d. Let

-d* By« 5 O By, ..., B be the label clause of the root node of Sg,, and

- By = Bj is then the label equation of the root of Sg,.
Moreover, let

- Spry ., SB;, be its immediate subtrees (in Fy), which we suppose to be attached
to BY,..., B,

- Briy,..., By is then the residual of its root node.
Let T% be the m-tree in Py U P; U Py obtained from T4 by replacing its subtrees
TB07TA17...7TA

with Sg,, 7%, ,..., T} , and let. R? be its resultant. Since we can
assume without loss of generality that the clauses in the subtrees Sg ,T% ,.... T}

n!

do not share variables with each other and with the clauses in T4, by Lemma 6.8.2
we have that

R~ R (6.8)

Now let us write out explicitly the resultant of B2, so let
- Crest be the constraint given by the conjunction of all the global expressions of
Th, .-, T ,, together with the internal constraint of Sgx,...,Sg* ;
- F be the (multiset) union of the residuals of Ty Th  Sery ey SBe s
- By = Ch,..., B, = U, be thelabel equations of the root nodes of Sgx, ..., Sg

We have that B? = A« ¢, O F, BrigissBry Apgr, oo, A, where ¢ s

*
m!

(A=Ag) Aea AeA (By=B5)Acg ANL B =C5) A regt
By CLP1, this reduces to
(A= Ag) Aea A(By=Bo) AN B =B) AN B =C5) A e (6.9)

Now we show that we can drop the constraint By = By. First notice that since
By is a renaming of By, then By = By can be reduced to a conjunction of equations
of the form x = y, where x and y are distinct variables. In the case that for some
x, y, By = By implies x = y, then we have that either » = y is already implied by
the constraint (A", BY = B;) or the variables  and y do not occur anywhere else in

(6.9), nor in RB?. So (6.9) becomes
(A= Aq) Aea AN B = B) AN B =Ch) A Crest (6.10)

On the other hand, by replacing B} with B. in the lhs of the label equations of
the root nodes of the trees Sgs,...,Sg= , we obtain the trees Sp—, ..., 55—, which,
m/ 1 m!

by T.emma 6.8.3, are m-trees of By ,..., B.,. Now let T% be the m-tree of Ain P, U P,
which is constructed as follows:

- ¢l is the label clause of its root
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- its immediate subtrees are SYBT, e SYBfI (in Fy) and T% ... 77&”/ (in P;).

Then the residual of T% is precisely A « ¢} . O F, Boijis-os By A, Ay where

3 .
Cior 18

ca N (N By = Bi) A (N By = C) A e
By this, (6.10) and (6.8), we have that T is similar to T}
Finally, since O(Fy) = O(F;), each of the trees Sz- (in Fy) has a similar tree
in P;, by replacing each Sp- with it in 7%, obtaining %j by Lemma 6.8.2 and the
usual assumption on the Va;’iab]es of the clauses in the SB7—787 T4 is similar to T3,

and hence to Ty, Since T is a tree in P;, this proves the thesis. O

Total correctness

We say that a transformation sequence is complete, if no information is lost during
it, that is O(My) C O(M;). When a transformation sequence is partially correct and
complete we say that it is totally correct. Before entering in the details of the proof
of total correctness, we need the following simple observation.

Remark 6.8.7 If ¢l is a clause of P; that does not satisfy condition CLP3 then the
predicate in the head of ¢l is a new predicate, while the predicates in the atoms in
the body are old predicates. O

The proof of the completeness is basically done by induction on the weight of a
tree, which is defined by the following.

Definition 6.8.8 (weight)
o The weight of an mtree T', w(T), is defined as follows:

— w(T) = size(T) — 1 if the predicate of A is a new predicate;
— w(T) = size(T) if the predicate of A is an old predicate.

o The weight of a pair (atom, resultant), (A, R), w(A, R), is the minimum of the
weights of the m-trees of A in Py, that have R as resultant. (modulo ~). O

In the proof we also make use of trees which have for label clause of their root a
clause of P; but that for the rest are trees of Fy. In particular we need the following.

Definition 6.8.9 We call a tree T' of atom A, descent tree in P; U Py if

e the clause label of its root node ¢/, is in P;;

e Its immediate subtrees Ty, ..., T} are trees in Fy;

o if Th,..., T, are trees of Ay,..., A, and Ry, ..., Rj are their resultants, then
(a) w(A,R) > w(Ar, Bi)+ ...+ w(Ag, Ry);
(b) w(A, R) > w(A1, Ri)+ ...+ w(Ayg, Ry) if ¢l satisfies CLP3. 0O

The above definition is a generalization of the definition of descent clause of [57].

Definition 6.8.10 We call P; weight complete iff for each atom A and resultant R,
if there is an m-tree of A in Fy with resultant R, then there is a descent tree of A
with resultant ~-equivalent to B in P, U F,. O
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So P; is weight complete if we can actually reconstruct the resultants semantics
of Py by using only descent trees in P, U F.

We can now state the first part of the completeness result.
Proposition 6.8.11 If P, is weight complete, then O(My) C O(M;).

Proof. We now proceed by induction on atom-resultant pairs ordered by the following

well-founded ordering =: (A, R) = (A’ R") iff

o w(A R)>w(A R);or
o w(A, R)=w(A R), and the predicate of A is a new predicate, while the one
of A”is an old one.

Let A, R, be an atom and a resultant such that there exist an m-tree of A in P with
resultant R. Since P; is weight complete, there exist descent tree Ty of A in P, U F,
with resultant R. Let also

~cl i Ag—ca O Ay, .. A, (in Py) be the label clause of its root,

- Ay, ..., A, be those atoms of ¢/ that have an immediate subtree attached to

-Th,,...,Ta, bethe immediate subtrees of T4 (in Fy) and Ry, ,..., R4 , be their
resultants. ’ ’

Then, since T4 is a descent tree,

w(A, R) > w(Ay, Ra))+ ...+ w(Ay, Ry ).

Now if w(A, R) > w(Ay, Ra, )+ ...+ 11)(/477/,’]%’,%\”,)7 then (A, R) = (A;, Ra;). Other-
wise, if w(A, R) = w(Ay, Ra,) + ...+ w(A,, R4 ,). by condition (b) on the descent
tree, we have that ¢l doesn’t satisfy CLP3, by Remark 6.8.7, this implies that the pre-
dicate of A is a new predicate, while the predicates in A,..., A, are old predicates.
By the definition of >, this implies that (A, R) > (A;, Ra,).

Hence, by the inductive hypothesis, there exist m-trees T ..., T;"nl of Ay,..., A,
in P; whose resultants are Ry, ,... [, (modulo ~). As usual we assume that the
clanses in the 7% ’s do not share variables with each other and with those in T'y. By
Lemma 6.8.2 the tree T, obtained from T4 by replacing each subtree T, with Tﬁ"]7
is an m-tree of A in P; with resultant R. This proves the Proposition. O

We we are now ready to prove our total correctness Theorem.

Theorem 6.5.3 (Total Correctness) Let My = (Py, Op(My)) be a module and
My, ..., M, be a modular transformation sequence. Then

o O(My)=0(M,).
Proof. We will now prove, by induction on 7, that for 7 € [0, n],

o O(My) =0O(M,),

o P is weight complete.
Base case. We just need to prove that Fy is weight complete.
Let A be an atom, and R be a resultant such that there is an 7-tree of A in Fy with
resultant R. Let T be a minimal m-tree of A in ) having R as resultant. 7" obviously

satisfies the condition (a) of Definition 6.8.9. Let ¢l be the label clause of the root of
T, notice that ¢l satisfies CLP3 iff its head is an old atom, just like the elements of
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its body. From the Definition of weight 6.8.8 and the minimality of T, it follows that
condition (b) in Definition 6.8.9 is satisfied as well.

Induction step. We now assume that O(FPy) = O(PF;), and that P; is weight complete.

From Propositions 6.8.6 and 6.8.11 it follows that if P,y is weight complete then
O(Fy) = O(P41). So we just need to prove that Py is weight complete.

Let A be an atom, and R be a resultant such that there is an 7-tree of A in Fy with
resultant K. since P; is weight complete, there exists a descent tree Ty of Ain P, U B,
with resultant R.

Let ¢l : Ag<+cy O Ay,... A, be the label clause of its root. let us assume
that Ay,..., A, are the atoms of ¢/ that have an immediate m-subtree attached to
in Ty, let T4, ,..., Ty, be the immediate subtrees of Ty and let R4 ,..., R4 , be
their resultants. By Lemma 6.8.2 there is no loss in generality in assuming that
TA1 N Ty

resultants.

_, are the minimal m-trees of Ay,... A, in Py that have R4, ,..., R4 , as

We now show that there exists a descent tree of A with resultant R (modulo ~)
in Py U Py, We have to distinguish various cases, according to what happens to the
clause ¢/ when we move from P; to P,i;.

Case 1: ¢l € P,y;.
That is, ¢l is not affected by the transformation step. Then T4 is a descent tree of A
with resultant R in P, U F,.

Case 2: ¢l is unfolded.

There is no loss in generality in assuming that A; is the unfolded atom. In fact, by
01, the unfolded atom cannot be an m-atom, so it cannot belong to the residual of
Th.

Now, since P; is weight complete, there exist a descent tree Tg, of Ay in P, U F,
with clause d : By« ¢ O By,..., B, (in P;) as label clause of the root, that has
the same resultant (modulo ~) of T'y,.

Let T be the partial tree obtained from T4 by replacing Ty, with Tg,. T7 is
an m-tree of A in P, U Fy; let R/, be its resultant, by Lemma 6.8.2 and the usual
assumption on the variables in the clauses of the subtrees, we have that

R~ R, (6.11)

Let Tg,,...,Tg_, be the immediate subtrees of Tg,, which we suppose attached to
Bi,..., By, let also Rp, ... R _, be their resultants. By Lemma 6.8.2 there is no

loss in generality in assuming that Tg,,...,Ts _, are the smallest trees of Fy in their

m!

equivalence class.
Let ¢,cs be the conjunction of the global constraints of T, ,.... T ,,T4,,..., T4 ,,

and F be the multiset union of their residuals; we have that

o A (A= A)) Aca A (A = Bo) A B A Crost O F, By By, Apigry -2, A,
(6.12)
Since Ay is the unfolded atom, d is one of the unfolding clauses, it follows that one
of the clauses of P, resulting from the unfold operation is the following clause:
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s Ag—ca N(Ar=Bo) Aeg O By, ... By, Ay o) A,
Now consider the m-tree T of A which is built as follows:

- ¢l’ is the label clause of the root.

-Tgyy...,Tg _,,Tay, ..., T , are its immediate subtrees.

Tts resultant is then

R”: AF(A = A()) A CA A (A] = Bo) A Cp A Crest O F7 Bm,’+17---7Bm,aAn’—l—17---7An

By (6.11) and (6.12) we have that the resultant of 7% is R (modulo ~).
Now, in order to prove that T is a descent tree, we have to prove that conditions (a)
and (b) in Definition 6.8.9 are satisfied.
Now
w(A, Ba) > w(Ay, Ba)) + ...+ w(Ay, Ry ) (since Ty is a descent tree),
>w(By, Rp,)+...+w(By, Bp )+ w(Azy, Ba,) + ... +w(Any, Ra ) (since Ty,
is a descent tree)
Moreover, if d satisfies CLP3 then, by condition (b) in Definition 6.8.9.
w(Ar, Ra) >w(By,B,)+ ...+ w(B,, Ry _,)
On the other hand if d does not satisfy CLP3, then by Remark 6.8.7 the predicate
of By and Ay must be a new predicate; again, by Remark 6.8.7 we have that ¢/ must
satisfy CLP3. Tt follows that
w(A, Ba) > w(A, Ra))+ ...+ w(Ay, Ra )
So, in any case, we have that ’
w(A, Ra) > w(Tg )+ ...+ 11)(T13m,) +w(Ta,)+ ...+ w(TAn,)

This proves that T is a descent tree.

Case 3: ¢l is removed from P; via a clause removal operation.

This simply cannot happen: the constraint of ¢/ is a component of the global con-
straint of T4y and since the latter is satisfiable, so is the first one. Therefore ¢l cannot
be removed from P;.

Case 4: ¢l is split.

Since no m-atom can be split, the split atom may not belong to the residual of T}y,
therefore there is no loss in generality in assuming that A, is the split atom and that
n' > 1.

Since O(Fy) = O(PF;), we have that for i € [1,n/] there exist an 7-tree 94,
of A; in P, which is similar to T4,. let S4 be the mtree obtained from T4 by
substituting its subtrees Ty, , ..., T4 , with S4,,..., 54 ,. From LLemma 6.8.2 and the
usual standardization apart of the clauses in the mﬂotfees7 it follows that S4 is an
m-tree of A in P; and that S4 is similar to T'4.

Now let (A1 = By ; d: Byg+ cg O By,..., B,) be the label of the root of Sy4,.
With this notation, the resultant of Ty (and S4) has the form

A (A= Ag) Nea AN(Ay = Bo) A e A Crese O Residual (6.13)

Since d is a clause of P; it was certainly used to split Ay in P;. Therefore in P,y we
find the clause
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el Ag—cea N(Ay =B A0 Ay A,
Where d* : By« ¢35 0 By, ..., B is a renaming of d. Here there in no loss in
generality in assuming that the variables of d* do not occur anywhere else in the
trees considered so far. Now, let T be the mtree of A in Py U Py obtained by
substituting ¢/ with ¢/’ as label clause of the root of T4. From (6.13) it follows that
the resultant of T7 is (~ equivalent to)

A— (A= Ag) ANea AN(Ay=Bo) Aeg A (A= BS) A ¢y A ¢req O Residual

Since d* is a renaming of d, and since its variables do not occur anywhere else in
T, in the above formula the subexpression (A; = BE) A ¢ is already implied by the
fact that the expression contains (A; = By) A ¢p, and therefore it may be removed
from the constraint. So, from (6.13) it follows that 77 is similar to T4. Now, in order
to prove the thesis we only need to prove that T% is a descent tree, that is, that it
satisfies conditions (a) and (b) of Definition 6.8.9, but this follows immediately from
the fact that the subtrees of T4y and T% are the same ones (and T is a descent tree)
and the fact that ¢/’ satisfies CLP3 iff ¢/ does.

Case 5: The constraint of ¢l is replaced.

The first part of this proof is similar to the one of the previous case. Since O(FPy) =
O(F;), we have that for i € [1,n'] there exist an 7-tree S4, of A; in P, which
is similar to T4,. Let S4 be the m-tree obtained from T4 by substituting its sub-
trees Ty ,...,Ta , with Sy ..., 54 ,. From Lemma 6.8.2 and the usual standard-
ization apart of the subtrees it follows that S4 is an mtree of A in P, and that
S 4 is similar to T'y.

Let c4,,...,c4 , be the internal constraints of S4,,...,54 , and ﬁ%h ooy g, be
their residuals. With this notation, the resultant of T4 (and S4) is

A%(A:Ao)/\CA /\C‘A1 VAN /\CAn' O ﬁA”---aﬁAnmAn’—l—h---aAn

Recall that by the assumption that the trees are standardized apart, for distinct
i,7 € [1,n], we have that Var(ca, O Fu,) N Var(ca, O Fa,) € Var(A;) N Var(Aj).
Then, from the existence of Sy ,...,54 , and from Remarks 6.8.4 and 6.8.5 it follows
that there exist a derivation

A17...7Anfj> CA, Ao A CAnI O ﬁA”---aﬁAnmAn’—l—h---aAn-

Now, let the result of the constraint replacement operation be the clause

el Ag— 0 Ay L AL
From the applicability conditions of the constraint replacement operation it follows
that the resultant

A()(—(A:A()) N €y /\C‘A1 VAN /\CAn' O ﬁA17...7ﬁWAn”An/_l_h...jAn’ 266]4)
Ao%(A:AO) /\CIA /\C‘A1 VAN /\CAn' O ﬁA17---7ﬁAnmAn’—l—h---aAna

Now, let T" be the tree obtained from T4 by replacing the clause label if its root, ¢l,
with ¢l’. Tts resultant is

A%(A:AO)/\(‘IA /\C‘A1 VAN /\CAn' O ﬁA”---aﬁAnmAn’—l—h---aAn
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And from (6.14) it follows that 77 is similar to T'4.

Now, in order to prove the thesis we only need to prove that 77 is a descent tree,
that is, that it satisfies conditions (a) and (b) of Definition 6.8.9, but this follows
immediately from the fact that the subtrees of T4 and T7 are the same ones (and T'4
is a descent tree) and the fact that ¢/’ satisfies CLP3 iff ¢l does.

Case 6: ¢l is folded.

Let {Ay = C4, ..., Ay = Uy} be the label equations of the root nodes of Ty, ..., Ty ,,
let also ¢,..q be the conjunction of the remaining internal equations (label equa,tioﬁs
+ clause constraints) of Ty ..., T4 ; finally, let F' be the residual of Tayyoo Ty,
We have that ’ ’

R A (A= Ag) Aea AN A; = C) A et O F Ay, A (6.15)

Now let the folding clause (in P,.,,) be

d: By By,....B,
There is no loss in generality in assuming that there exists an index k£ such that
Agy ..oy Apay are the unfolded atoms, so for 7 € [1,m], Axy; and B; are unifiable
atoms. The result of the folding operation is then

e Ag—ca NeO Ay . Ag, Bo, Apgmat, - - - A
Now notice that of the atoms of ¢l that are going to be folded, Ay q,..., A, are the
ones that have an immediate subtree attached to in T4, These atoms correspond to
Bi,..., By in d, (we should also consider explicitly the cases all have or have not
a subtree attached to, that is, the cases in which n’ < k or n’ > m + k, however these
are easy corollaries of the general case, so we now assume that k& <n’ < m + k).
Now let T'g, be the m-tree of By in Fy built as follows:

-d': By« dg O By, ..., B/ (an appropriate renaming of d) is the label clause of
its root node,

- By = B, is then the label equations of its root node,

- Tgr,...,Tgr, —areits immediate subtrees, which are obtained, as explained in

Lemma 6.8.3, from the trees Tapprs---+Ta,, by replacing Ay with B! in the lhs of
the label equations of their root nodes.
- Bl _piys---, B, is consequently the residual of its root node.
Finally, let T} be the mtree of A in P,y 1 U Py which is built as follows:
- ¢l’ is the label clause if its root (and this is a clause in Piyq).
- Tayy....Ta,_,,Tg, are its immediate subtrees (in Fp).
Let R” be its resultant, we have that

RII = A — Ciot O ﬁ7 B;,'7k+17' B B;n7 Ak+m,+1 b ey An (6]6)

where F'is the (multiset) union of the residuals of Ty,,.... T4, ,,Tr, and ¢y is

(A= Ag) Aeahen(Bo=By) Ay AN Aj=Ci) A (N Bl = Ci) A e

By CLP1 this becomes:

(A= Ag) Aea A (Bo=Bg) AN By = Bi) A (N2 Aj = Ci) A (NS Bl = Ci) A erest

=1 J
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As we did in Proposition 6.8.6, we now show that we can drop the constraint By = B,,.
First notice that since B is a renaming of By, then By = B{ can be reduced to a
conjunction of equations of the form x = y, where x and y are distinct variables.
So suppose that for some =, y, By = B{, implies that @ = y, then either 2 = y is
already implied by the constraint (A”2; B; = B}), or the variables 2 and y do not
occur anywhere else in (6.17), nor in R".

Thus ¢;,; can be rewritten as follows:

(A= Ao) Aea NN By = Bi) AN Aj = C)) ANy By = C3) A et

By making explicit the constraint (A7, B; = B!) and comparing the result with
(6.15) we see that T is an m-tree of A in Py U Py with resultant R (modulo ~).
We now need only to prove that T is a descent tree, that is, that it satisfies the
conditions (a), (b) of the Definition 6.8.9.

Let Rpg, be the resultant of Tg,. Since d is the folding clause, the predicate of By
must be a new predicate, while the predicates of By ... B,, have to be old predicates.
Moreover, by condition CLP2, any proof tree of By in Py whose global constraint is
consistent with ¢, A e must have (a renaming of) d as label clause of the root. By
Definition 6.8.8 we then have that

w(Bo, Bp,) <w(Ts,)+...+w(Ts, ) (6.18)

Moreover, for j € [1,n" — k], w(T4,,,) = w(Tg,), and, since Ty is a descent tree and
the clause of its root node satisfies CLP3, by Definition 6.8.8 we have that

w(A, R) > w(A, Ba))+ ...+ w(Au, T )

=w(Ay, Ba) + . Fw(Ag, Ba,) +w( A, Bay, )+ Fw(Ay, By )

=w(A, Ba) 4+ ..o+ w(Ay, Ba) +w(Ta,,, )+ ...+ w(Ta ,) (by the minimality
of the Ty4)

= w(/\] JBa) + o+ w(An Ra,) +w(Te))+ ... +w(Ts ,_, ) (by the definition of
T}g])

> w(Ar, Ra)) + ...+ w(Ag, Ra,) +w(Bo, Rg,) (by (6.18)).
Thus T7) satisfies conditions (a) and (b) of Definition 6.8.9. O



Chapter 7

The Replacement Operation for CLP
Modules

In this chapter we study the replacement transformation for Constraint Logic Pro-
gramming modules. We define new applicability conditions which guarantee the cor-
rectness of the operation also wrt module’s composition: under this conditions, the
original and the transformed modules have the same observable properties also when
they are composed with other modules. The applicability conditions are not bound to
a specific notion of observable. Here we consider three distinct such notions: two of
them are operational and are based on the computed constraints; the third one is the
algebraic one based on the least model. We show that our transformation method can
be applied in any of these distinct contexts, thus providing a parametric approach.

7.1 Introduction

Central to the development of large and efficient applications is now the study of
optimization techniques for programs and modules. Concerning specifically the CI.P
paradigm, the literature on this subject can be divided into two main branches.
On one hand we find methods which focus exclusively on the manipulation of the
constraint for compile-time [73] and for low-level local optimization (in which the
constraint solving may be partially compiled into imperative statements) [56]. Com-
pile time optimizations based on static analysis have also been investigated [72]. On
the other hand there are techniques such as the unfold /fold transformation systems,
which were developed initially for Logic Programs [96] and then applied to CI.P in
[69, 14] and in chapter 6 of this thesis. These latter methods focus primarily on the
declarative side of the program.

Replacement is a program transformation technique flexible enough to encompass
both the above kind of optimization: it can be profitably used to manipulate both
the constraint and the “declarative” side of a CLLP program. In fact the replacement
operation, which was introduced in the field of Logic Programming by Tamaki and
Sato [96] and later applied to CI.P in [69, 14], syntactically consists in replacing a
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conjunction of atoms in the body of a program clause by another conjunction. It is
therefore a very general operation and it is able to mimic many other transformations,
such as thinning, fattening [18] and folding (see [77] for a survey on transformation
techniques for logic languages).

Clearly, a primary requirement a transformation operation should satisfy is cor-
rectness: the original and the transformed program should be equivalent wrt to some
(operational or declarative) reference semantics. In the logic programming area, a
lot of research [96, 67, 47, 88, 20, 69, 14, 32, 80] has been devoted to the definition
of applicability conditions sufficient to guarantee the correctness of replacement wrt
several different semantics. Unfortunately, apart from [69], none of these transform-
ation systems can be correctly applied to modules. In fact, since they all refer to
semantics which are not compositional wrt &, they provide correctness results which
are adequate only if programs are seen as stand alone units. As we already explained
in chapter 6, when we transform a module M into M’ we don’t just want M and
M’ to have the same behavior: we want them semantically equivalent whatever is
the context in which we use them. In other words we need some further applicability
conditions which guarantee that, given any other module Q, M & @ and M’ § @Q will
be equivalent to each other. When this condition is satisfied we say that M and M’
are compositionally equivalent or congruent'.

Furthermore, even when restricting to the non modular setting, the applicability
conditions so far provided for the replacement transformations suffer from drawbacks
which, in our opinion, prevented a wider diffusion of the operation. On one hand, some
of them [47, 88, 67, 69] do not allow replacement to introduce recursion, which, as we
will shortly see, is an important feature for optimizing Constraint Logic Programs.
On the other hand, other approaches [96, 20, 80] do exploit the full potentiality of
replacement, but at the price of applicability conditions which are discouragingly
complicated.

In this chapter we study optimizations based on the replacement operation for
CLP modules. We provide some natural and relatively simple applicability conditions
which ensure us that the transformed program is compositionally equivalent to the
original one. Our approach is based on the following two requirements:

(i) The replacing conjunction must be equivalent to the replaced one (in a sense
which enforces compositional equivalence). This is already the point where we
depart from previous approaches: the equivalences used so far to relate the
replacing and the replaced part are not sufficient to guarantee the preservation
of compositional equivalence.

(i1) The replacement must not introduce (fatal) loops.

Here, we call a loop fatal if it prevents the computation from ending successfully.
Indeed, the equivalence of the replacing and the replaced part alone is not
sufficient to guarantee that the replacement is correct. We individuate two
situations in which the operation certainly does not introduce any fatal loop:

TOF course, depending on which ohservable property of computation we consider, different in-
stances of congruence can be obtained.
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(a) When the replacing conjunction is at least as efficient as the replaced one.
Referring to the operational semantics this means that each time we can compute
an “answer” constraint ¢ for the replaced conjunction (in the given program)
in n steps, we can also compute the answer ¢ for the replacing one in m steps
with m < n. This is undoubtedly a desirable situation which fits well in the
natural context in which the transformation is performed in order to increase
program’s execution speed. Moreover, this condition is flexible enough to allow
us to introduce recursion (which can be seen as an example of non-fatal loop)
in the definition of the predicates.

(b) When the replacing conjunction is independent from the clause that is going
to be transformed.

This clearly guarantees that no loops are introduced.

The advantages of this approach to the replacement operation are twofold.

Firstly, our method is parametric wrt the semantic properties of the program we
want to maintain along the transformation. We consider here three such observable
properties: two of them are operational, as they are based on the result of the the com-
putations (the computed answer constraints), while the third one is a logical notion
(the least model on the relevant algebraic structure). Depending on which property
we refer to, we can naturally instantiate the generic notion of equivalence relative
to the requirement (i) above and obtain applicability conditions which guarantee the
preservation of the desired properties.

Secondly, as we said, our approach allows us to obtain compositionally equivalent
programs. We can then transform independently the components of an application
and successively combine together the results while preserving the original meaning of
the program. This is also useful when a program is not completely specified in all its
parts, as it allows us to optimize on the available modules. Moreover, the equivalence
mentioned in (i) can be simply modified to match the “degree” of modularity we
desire. Results for the non-modular cases are then obtained as easy corollaries.

This chapter is organized as follows. In Section 7.2 we state the applicability
conditions needed to obtain compositionally equivalent programs, wrt the answer
constraints notion of observable, and we present the main correctness result. 1In
Section 7.3 we illustrate the optimization technique based on replacement through a
simple example. Section 7.4 shows how the applicability conditions can be modified
(weakened) when we refer to other semantic properties of modules. Section 7.5 con-
cludes by comparing our results to those contained in some related papers. Some
proofs are deferred to the Appendix.

Preliminaries

The notations and the necessary preliminary notions are given in the previous chapter,
sections 6.2 and 6.3. The only difference is that in this chapter we’ll use a slightly
more restrictive form of Z-equivalence: given two clauses having the same head,
cli: A O ]§1 and cly 1 Ay O ég. We say that ¢ly is similar to cly, cly ~ ¢ls,
iff for 7,7 € [1,2], for any D-solution o of ¢; there exists a D-solution v of ¢; such
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that B and ];fy are equal as multisets. Notice that, as opposed to definition 6.3.6
here we also require that two clauses, in order to be similar, must have exactly the
same heads (this will simplify the proofs).

7.2 Operational correctness of Replacement

As previously discussed, the replacement operations consists simply in replacing a
conjunction of atoms in the body of a program clause by another conjunction. Clearly,
some applicability conditions are necessary in order to ensure the correctness of the
operation.

In this section we first define an operational notion of correctness based on the
answer constraints. Then we provide some applicability conditions for replacement
in form of a natural formalization of the requirements (i) and (ii) discussed in the
introduction. Then we show that, whenever these conditions are satisfied, the replace-
ment operation is operationally correct. Later, in Section 7.4, we will also show how
these conditions can be modified (weakened) when considering correctness based on
different operational and logical notions.

Operational congruence

To define formally the notion of operational correctness we first provide the definition
of module’s operational congruence. This concept allows us to identify those modules
which have the same operational behavior in any @-context, (this is why it is actually
a congruence relation, wrt the @ operator).

First, we extend the equivalence ~ to derivations.

Definition 7.2.1 let P, P’ be two programs, £ : ¢ O ¢ L b0 Band g eDC ~

~ PI
¥ O B’ be two derivations starting in the same goal. Let also # = Var(c D (:Y) We

say that
€ is similar to &', £~ ¢,
iff g(7) « b0 B ~ ()« b 0 B’, where ¢ is any (dummy) predicate symbol?. O

This concept allows us to give the definition of operational congruence. Recall
that a refutation is a derivation that ends in a goal with an empty body.

Definition 7.2.2 (Operational Congruence) Let M; and M; be CLP modules
that have the same set of open predicates. We say that

M, and My are operationally congruent, My ~o, My,
iff, for every module N such that M, & N and My & N are defined, we have that for

each refutation in M; @ N there exists a similar refutation in My @ N and vice-versa.
O

2We use the notation based on ¢ as a shorthand: indeed, according to the definition of ~, this
means that for for any D-solution 9 of b there exists a D-solution ¥ of b’ such that 1 and ¥’ coincide
on the set Z and the multisets B and B4y are equal, and vice-versa.
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Accordingly, we say that a transformation is operationally (totally) correct iff it
maps modules into operationally congruent ones.

We now give a result which provides a condition sufficient to guarantee the op-
erational congruence of two modules. Here, and in the sequel, given a set of pre-
dicate symbols 7 we call a m-derivation any derivation ¢ 0 C' ~ b0 B such that

Pred(B) C .
Theorem 7.2.3 [42] Let My = (P, m) and My = (P5,7) be two modules. If

e for each m-derivation in M, there exists a similar m-derivation in M,

then, for every module M such that My & M and My & M are defined, we have that
for any refutation in My, & M there exists a similar refutation in M, & M. O

Partial correctness

In order to give the applicability conditions for the replacement operation, we start
with requirement (i): we want the replacing conjunction to be equivalent to the
replaced one. To this end, we provide the following definition of query’s equivalence.
Here and in the following we say that a derivation £ is renamed apart wrt a set of
variable 7 if all the clauses used in & are variable disjoint with 7.

Definition 7.2.4 (Query’s operational equivalence) Let M = (P, 7) be a mod-
ule, ¢; O 4 and ¢y O (5 be two queries and & be a tuple of variables. Then we say
that

¢ 0O (:H is O-equivalent to ¢y O ég under = in M

. . -~ P ~ . .
iff for each m-derivation ¢; O C; ~ b, O B;, renamed apart wrt 7, there exists a

derivation ¢; O (:Yj L b, O éj, renamed apart wrt  such that ¢(#) «+ b, O B; ~
q(7) < b; O B;, where 4,7 € [1,2], 7 # j and ¢ is any (dummy) predicate symbol®.
O

The idea behind the above definition, and which distinguishes it from all the
previous approaches, is that in a modular context we cannot just refer to refutations,
but we also have to take into account those partial derivations that end in a tuple
of open atoms, whose definition could eventually be modified. Notice that the larger
is the set of open predicates we consider, the stronger becomes the definition of
equivalence. Indeed, having more open predicates implies that the derivations we
consider are more likely to be influenced by the adjoining of external definitions.

As we informally mentioned in the introduction, when we replace ¢ 0 (' by d O D
in the clause ¢l : A « ¢ O (', F, our first requirement will be the equivalence of ¢ 0 C'
and d O D under Var(A, ﬁ) in M. We now show that if this requirement is satisfied
then the operation is at least partially correct. This is the content of the following.

Theorem 7.2.5 (Partial Correctness) et ¢/ : A« c¢OC, K be a clause in the
module M : (P,m) and M’ : (P, m) be the result of replacing ¢ 0 C' by d O D in cl.
So PP=P\{cd}U{cl': A=dDO D FE}. If

3The condition on clauses used in the derivation is needed to avoid variable name clashes.
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o d 0D is O-equivalent to ¢ O C under Var(A, E) in M,

then for each m-derivation ¢ in M’ there exist a similar m-derivation £ in M.

Proof. Here, as well as in the proof of some other theorems that will follow, some
equations will be labeled with the special sign {. We do this because we are also
going to refer to such equations also in the sequel, however, as far as this proof
is concerned, these labels are of no relevance. First, we need to state a couple of
preliminary results. The proof of the first one is immediate, and thus it is omitted.

Claim 7.1 lLet P be a program, and ¢ O (' be a query. Then, for any n, there exists a
derivation e 0 C L. d 0 D of length n iff there exists a derivation true O C Laob
of length n such that

(iyd=eNd

(i1) the variables that d O ) and ¢ have in common are a subset of the variables

of C.
O

Claim 7.2 [42] Let P be a program, and ¢; A ¢ O Cy,Cy be a query. Then, there
exists a derivation ¢; A ¢y O , Cs Laab of length n iff there exist two derivations

& O C, L d; O D, and 90 O Cs L dy O Dy such that
(1) D= 12)17 f)g7 and d = d; A dj is satisfiable,

(i1) the variables that & and & have in common are exactly those that ¢; O (:H and
¢ O )y have in common,

(i) & ]+ 16 = n. 0

We can now continue with the proof of the Theorem, so let & be a m-derivation
in M’. We have to show that there exists a derivation ¢ in M which is similar to
£, For this we proceed by induction on the length of the derivation. The base case,
|€] = 0, is trivial, as the derivations of length zero are (by definition) the ones of the

form b0 B 50 B. Therefore we proceed with the inductive step. By Claims 7.1
and 7.2, £ can be chosen of the form

£ true 0 H X b0 B

Where B contains only m-atoms, and where (since this derivation has length greater

than 0) we can assume that Var(H) N Var(B) = (. By the definition of derivation,
there has to exist a (renaming of a) clause of M’,

Je—eal (7.1)
and a m-derivation
¢ (H=0)Ae, 0 L b0 B

Where [£'| = |('| + 1. By the inductive hypothesis, there exists a derivation ( in
M such that ( ~ C'T Now, if the clause of (7.1) was also a clause of M (that is,
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if it was not a result of the transformation), then there would exist a derivation ¢

in M such that & ~ f't concluding the proof. So we have to consider the case in

which J ¢, O L € M’\M; in this situation, J < ¢y, O L is exactly (a variant of)
the clause I’ :+ A« d 0 D, E. By appropriately renaming all the variables in the
clauses and the derivations considered so far, we can assume that (’ is exactly the
derivation

¢ (H=A)ndo D, EX b0 B.
By Claim 7.2, there exist two derivations (] and (} such that

¢:dobXp 0B,
G (H=A0EX 08,
b=0b; ANbyand B= B, By, (7.2)
gl = =1, ~
Var(by O By) N Var(by O By) C Var(d O D)N Var((H = A) O F).
Here and in the sequel, we make the following assumption:

Assumption 7.2.6 Fach time we consider a new clause or a new derivation, the vari-
ables that the new expression has in common with the ones previously mentioned are
only the ones that are strictly necessary.

By the inductive hypothesis, there exist two derivations (; and (3 in M. such that
G:do DXy B
G (H=A4)0 X p0p;,
GGl oand Gaglh, (7.3)
Var(bs O BX) N Var(b; 0 B3) C Var(d O D) N Var((H = A) O F). (7.4)

Since d O D is equivalent to ¢ O C under Var( A, f?) in M, it follows that there exists
a derivation
Cgl CDCMbgm Bg

such that for any dummy predicate symbol g, if we let & = Var( A, ]:7)7

Here there is no loss in generality in assuming that the variables of bs O Bs which do
not occur in d O D, also do not occur in the derivations considered so far. So, by
Claim 7.2, we can put together (3 and (5, and obtain the derivation

G (H=A)AdO D, EX by A b0 By, B

Since in M we find the clause ¢/ : A+ ¢ O O, E, by the definition of derivation there
exists a derivation & which uses only clauses of M and which is similar to

true O 1 L bs A b5 O ]%7 l?z*
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Since the variables that b3 O Bs has in common with the rest of this expression are

certainly contained in Var(A, ]:7)7 from (7.2), (7.3) and (7.5) it follows that & ~ S'T
Hence the thesis. O

Combined with Theorem 7.2.3, this Theorem shows that, when its hypothesis are
satisfied, for every module N such that M & N and M’ @& N are defined and for each
refutation in M’ @& N there exists a similar refutation in M @& N. In other words, that
the transformation has not added to the program any extra semantic information.

Notice also that in the above Theorem we assume that when we perform the
replacement, then we always substitute the whole constraint of the clause with a new
one. This is obviously no restriction: if in the clause A+ b A ¢ 0O C, F we want
to replace ¢ 0 C with d O D, then we can always say that we are actually replacing
b A e withb AdD D,in fact if the conditions of the above Theorem are satisfied
in the first case, they are also satisfied in the latter.

An immediate consequence of Theorem 7.2.5 is the following simple Corollary
which characterizes the situations in which we have total correctness.

Corollary 7.2.7 Tet ¢l : A+ ¢ 0O C, E be a clause of the module M : (P, ), and
M’ : (P',m) be the result of replacing ¢ O C with d O Dinel. So P = P\{cl} U {cl:
A« dOD,E}. TfeD Cis O-equivalent to d O D under Var(A, E) in M then

o M ~p M’ iff ¢ 0 C is equivalent to d O D under Var(A, F) in M.

Proof.

(=). Tt is easy to see that if ¢ O (' is O-equivalent to d O D under Var(A, F) in
M and M ~o M’ then ¢ O (' is also O-equivalent to d O D under Var( A, F) in M.

(«<). By Theorem 7.2.5 we have that each m-derivation in M’ has a similar 7-
derivation in M’. Now M can be re-obtained from M’ by replacing back d O D by
¢ C. Since by hypothesis ¢ 0 (' is also O-equivalent to d O D under Var( A, F)
in M’, from Theorem 7.2.5 we also have that each m-derivation in M has a similar
T demvahon in M’, therefore, by Theorem 7.2.3 M ~o M'. O

Roughly speaking, the previous Corollary states that the operation is operationally
correct if the replacing and the replaced conjunctions are operationally equivalent
both in the initial and the resulting program. Of course this result requires some
knowledge of the the semantics of the resulting program and therefore cannot be
used as an applicability condition for the replacement operation: for that purpose
we want conditions which are based solely on the semantic properties of the initial
program. To this is devoted the rest of this section.

Total correctness

When we replace ¢ [ C by d O D in the clause ¢/ : A < ¢ 0 C, E, the equivalence of
0 C and d O D under Var(A, F) in M is not sufficient to guarantee total correct-
ness, as there may be computations which can be done in the original module M, but
not in the transformed on M’. In fact, when D depends on the modified clause the
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replacement can introduce a loop thus affecting the total correctness. This is shown
by the following classical counter-example.

Example 7.2.8 Tet (P, ()) be the module consisting of the following clauses.

cl: q ¢<r.
r.

In this case both q and r succeed with empty computed answer, so they they are
actually equivalent to each other (under any set of variables). However, if we replace
r with q in the body of ¢/ we obtain
cl”: q <q.
r.

which is by no means congruent to the previous module. In fact we have introduced
a loop and p and q do not succeed any longer. O

Now we propose two methods for guaranteeing that no “fatal” loops are intro-
duced. These methods formalize the requirement (ii) we mentioned in the introduc-
tion. The first one is the most complex but in our opinion is also the most useful for
program’s optimization. It is based on the following Definition.

Definition 7.2.9 (Not Slower) Let M = (P, 1) be a module, ¢; O Cy and ¢, O C,

be two queries and & be a tuple of variables. Then we say that
cy O (:YQ is O-not-slower than ¢; O (:H under = in M

. .. 5 P ~ . .

iff for each m-derivation & : ¢y O Cy ~ by O By, renamed apart wrt 7, there exists
.. 5P ~ N

a derivation & 1 ¢y O Uy ~ by O By, renamed apart wrt 7 such that |&] < & and

that ¢(#) <= by O By ~ ¢(i) « by O B,, where ¢ is any (dummy) predicate symbol®.
O

We are now ready to state our first result on total correctness.

Theorem 7.2.10 (Correctness I) Letcl: A« cOC, K be a clause in the module
M (P,m) and M' : (P',7) be the result of replacing ¢ 0 €' by d O D in ¢l. So
P = P\{c}U{cl': A=dDO D E}. If

o d 0D is O-equivalent to and )

o O-not-slower than ¢ O C under Var(A, F)in M

then M ~p M’.

Proof. For practical reasons, we now divide the proof in two parts: the first one
is the counterpart of the first part of the proof of Theorem 7.2.5, and will also be
referred to in the proof of Theorem 4.7.

Part 1. By Theorem 7.2.5 it follows that each mderivation ¢ in M’ there is a
derivation £ in M such that ¢ ~ ET, therefore, by Theorem 7.2.3, in order to prove
the thesis we have to show that also the converse holds, that is, that for each -
derivation £ in M there is a derivation & in M’ such that £ ~ E'T With no further

4 Again, the condition on clauses used in the derivation is needed to avoid variable name clashes.
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effort we’ll show that in this situation we can always find a & such that [£] > |€].
This will be used to prove Corollary 7.2.12.

We proceed by induction on the length of the derivation. Let ¢ be a m-derivation
in M.

Base case |£] = 0. This case is trivial, as the derivations of length zero are the

ones of the form b0 B b0 B,
Inductive step. By Claims 7.1 and 7.2, £ can be chosen of the form

£: true 0 H X b0 B

where B contains only m-atoms, and where (since this derivation has length greater

than 0) we can assume that Var(H) N Var(B) = (. By the definition of derivation,
there has to exist a (renaming of a) clause of M,

Je—eal (7.6)
and a m-derivation
(: (H=NAe 0L bORB

where [£] = |(| + 1. By the inductive hypothesis, there exists a derivation ¢’ in

M’ such that ( ~ C'T and that (] > |('|. Now, if the clause of (7.6) was also a clause
of M’ (that is, if it was not affected by the transformation), then there would exist

a derivation ¢ in M’ such that & ~ f't and that [£] > |€'] concluding the proof.
So we have to consider the case in which J < ¢, O L € M\M’; in this situation,
J ¢, O L is exactly (a variant of) the clause ¢/ : A+ ¢ O C', E. By appropriately
renaming all the variables in the clauses and the derivations considered so far, we can
assume that ( is exactly the derivation

C: (H=A)ren O, EXL b0 B
By Claims 7.2, there exist two derivations (4 and (3 such that

G: (:D(?MZMDF?M
G (H=A0E% b0 B,
b=b Abyand B = By, By, (7.7)

G+ Gl =[¢] = ¢ -1,
Var(b; O §1) N Var(by O ég) C Var(e O (:Y) N Var((H=A)0O ﬁ)

Here, like in the proof of 7.2.5 we follow Assumption 7.2.6, so the variables that each
new expression has in common with the ones previously mentioned are only the ones
that are strictly necessary.

Part 2. So, by the fact that d O D is equivalent to and not-slower than ¢ 0 ¢ under
Var(A, F)) in M it follows that there exists a derivation

Cgl dDﬁMquéq
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such that |Gs] < |Gi], and that for any dummy predicate symbol g, if we let & =
Var(A, F),

Here there is no loss in generality in assuming that the variables of b; O B which do
not occur in d O D, also do not occur in the derivations considered so far. So, by
Claims 7.2, we can put together (3 and (3, and obtain the derivation

C42 (H:A)/\(]D ]M)jﬁ’\]\ibg/\bgljéjhég.

Here we obviously have that:

Observation 7.2.11 The variables that b; 0 Bz has in common with the rest of this
expression are certainly contained in Var(A, F).

Moreover,the following holds: (4] = |G|+ |G| < |G|+ G| = (] = [€] — 1. Therefore,

by the inductive hypothesis, there exists a derivation (' : (H = A) A d O D, FE M,
by A by, O BL, B such that

G ¢ Tand |G > | (7.9)

Since in M’ we find the clause ¢/ : A<« d 0O D, E, by the definition of derivation
there exists a derivation ¢ : true O H LA b, A B, O By B, From (7.7), Observation
7.2.11, (7.8), and (7.9) it follows that & ~ S'T and that |£] > |£’|. Hence the thesis. O

Note that that d O D is (operationally) not-slower than ¢ O C in M if computing
an answer for d 0 D in M, under any @-context, never requires more iterations that
computing the corresponding answer for ¢ O C'. Clearly, this means that the definition
of d 0 D is at least as efficient as the one of ¢ 0 (. Therefore, the requirement
of the above theorem, namely that the replacing conjunction has to be not-slower
than the replaced one, fits well in a context where transformation operations are
intended to increase the performances of programs. Indeed, it is easy to show that,
when the hypothesis of the above theorem are satisfied, then the resulting module is
(computationally) at least as efficient as the initial one. This is the content of next
Corollary.

Corollary 7.2.12 T.et M and M’ be modules. Suppose that M’ was obtained from
M by applying a replacement operation in which the conditions of theorem 7.2.10
were satisfied. Then for each 7m-derivation £ in M there exists a similar m-derivation
& in M’ such that ¢ is not longer than &.

Proof. It is included in the proof of Theorem 7.2.10. O

The second and maybe easiest method we propose for ensuring that no fatal
loops are introduced by the replacement, is to require that no predicate symbol in
D depends on the predicate symbol in the head of ¢l. Tn this case no loop can be
introduced at all. For this we need the following formal notion of dependency.
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Definition 7.2.13 (Dependency) let P be a program, p and ¢ be relations. We
say that p refers to ¢ in P iff there is a clause in P with p in the head and ¢ in
the body. We say that p depends on g in P iff (p,q) is in the reflexive and transitive
closure of the relation refers to. O

We can now state our second result on total correctness.

Theorem 7.2.14 (Correctness IT) et ¢/ : A« cOC, K be a clause of the mod-
ule M : (P, 7), and M’ : (P’ 1) be the result of replacing ¢ O C by d O D in ¢l. So

P =P\ U{cl': AedO D, E}. I

o ¢ 0O C is O-equivalent to d O D under Var(A, E) in M and
e no predicate in D depends on Pred(A) in M

then M ~p M’. O

Proof. The first part of the proof is identical to Part 1 of the proof of Theorem 4.3,
so we just refer to it, and proceed with the second part.

Part 2b. So, by the fact that d O D is equivalent to ¢ O ' under Var( A, f?) in M,
It follows that there exists a derivation

Cg : (] | ]5 M bg | ég
such that for any dummy predicate symbol g, if we let & = Var( A, ]:7)7

Since the atoms in d O ) are independent from ¢, the clauses used in (3 are also
clauses of M’, so in M’ there exists a derivation (3}, which is identical to (5, (} :

dopX by O B,. Moreover, since |Ca] < |€], by the inductive hypothesis there exists
a derivation (3 such that

G: (H=A)0 B b0 B,
GGt (7.11)
By Claim 7.2 we can put together () and (5 and obtain the derivation
Cr(H=A)AdD D EX by A6, 0By, B

Since in M’ we find the clause ¢/’ : A<« d 0O D, E, by the definition of derivation
there exists a derivation £ which uses only clauses of M’ and which is similar to

true O H X by A by O ]éé, Bs.

Since the variables that b3 O ég has in common with the rest of this expression are

certainly contained in Var( A, ]:7)7 from (7.7), (7.10) and (7.11) it follows that £ ~ ¢’ i
Hence the thesis. O
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7.3 An Example

In this section we show what kind of optimizations can be achieved via replacement,
through a worked example. In particular, we’ll show that, under the given applic-
ability conditions, replacement allow us to introduce recursion in the definition of
predicates. For this we employ a transformation strategy which is typically used in
unfold /fold systems such as the one in [96]. Indeed, the applicability conditions we
will give are general enough to let replacement mimic most of the transformations
feasible with the tools of [96]. One advantage of replacement over folding is that the
applicability conditions for the former refer solely to the (semantic) properties of the
program we are working on, while for folding these depend also on the history of the
transformation (that is, on the transformation steps previously performed). In any
case, to the replacement operation there is much more than just mimicking the folding
one, since the replacing and the replaced conjunction can be totally independent from
each other.

The following example is a simplified version of the one used in chapter 6.

Example 7.3.1 (Computing an average) Consider the following CLP(R)? pro-
gram AVERAGE computing the average of the values in a list. Values may be given
in different currencies, for this reason each element of the list contains a term of the
form (Currency, Amount). The applicable exchange rates may be found by calling
the predicate exchange rates, which will return a list containing terms of the form
(Currency, Exchange Rate), where Exchange Rate is the exchange rate relative to
Currency. As we already mentioned in chapter 6, despite its simplicity, this is a typ-
ical program that can be used in a modular context. Indeed, if we consider that the
exchange rates between currencies are typically fluctuating ratios, it comes natural
to assume exchange rates as an open (or imported) predicate, which may refer to
some external information server to access always the most up-to-date information.

average(List, Av) <«
Av is the average of the list List

cl: average(Xs, Av) < Len > 0 A Av#Len = Sum 0O
exchange rates(Rates),
weighted sum(Xs, Rates, Sum),
len(Xs, Len).

weighted sum(List, Rates, Sum) <«
Sum is the sum of the values in the list List
where each value is multiplied by the exchange rate corresponding to its currency

weighted sum([], 0).
weighted sum([ (Currency, Amount) | Ts], Rates, Sum) <+

SCLP(R) [55] is the CLP language obtained by considering the constraint domain & of arithmetic
over the real numbers. The signature for 3 contains the constant symbols () and 1, the binary function
symbols + and *, and the binary predicate symbols +, <, < for constraints which are interpreted
on the real numbers as usual.
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Sum = Amount*Value + Sum” O
member ((Currency, Value), Rates),
weighted sum(Ts, Rates, Sum”).

len(List, Len) <«
Len is the length of the list List

len([], 0 ).
len([H|Ts], Len) <« Len = Len"+1 O len(Ts, Len”).

Notice that the definition of average needs to scan the list Xs twice. This is a
source of inefficiency that can be fixed via unfolding and replacement operations. The
transformation strategy which we are going use use is often referred to as tupling [77]
or as procedural join (see [62]). First, we introduce a new predicate w_sum_and_len
defined by the following clause

c2: w_sum_and_len(XS, RATES, SUM, LEN) <« O
exchange rates(RATES),
weighted sum(XS, RATES, SUM),
len(XS, LEN).

w_sum_and_len reports the weighted sum of the values in XS, together with the length
of Xs itself and the list of the exchange rates. Notice that w_sum_and_len, as it is
now, needs to traverse the list Xs twice as well. We start to transform AVERAGE by
unfolding both weighted sum(XS, RATES, SUM) and len(XS, LEN) in the body of
c2. This operations yield the module AV; which contains the following two clauses:

c3: w_sum_and len([], Rates, 0, 0) < 0O exchange rates(Rates).
c4d: w_sum_and len([(Currency,Amount)|Rest], Rates, Sum, Len)
Len = Len”+1 A Sum = Amount*Value+Sum~”~ 0O
exchange rates(Rates),
member ((Currency, Value), Rates),
weighted sum(Rest, Rates, Sum”),
len(Rest, Len”).

From the correctness of the unfolding operation it follows that AVERAGE = AV;.
Now, we can replace exchange rates(Rates), weighted sum(Rest, Rates, Sum”),
len(Rest, Len”) by w_sum_and_len(Rest, Rates, Sum”, Len”) in the body of

c4. TIn the resulting module AV,, after cleaning up the constraints®”, the predicate
w_sum_and_len is defined by the following clauses:

c3: w_sum_and len([], Rates, 0, 0) < 0O exchange rates(Rates).
c5: w_sum_and len([(Currency,Amount)|Rest], Rates, Sum, Len)

5Gince all the semantic properties we refer to are invariant under ~, we can always replace any

clause ¢l in a program P by a clause cl’, provided that eI’ ~ ¢l. This operation is often referred to
as a clean up of the constraints as 1t is mainly used to present a clause in a more readable form.
“Since all the semantic properties we refer to are invariant under ~, we can always replace an

) . ..

clause ¢l in a program P by a clause ¢!’ provided that ¢’ ~ cl. Of course we can also rename all

the variables in a clause. This operation is often referred to as a clean up as it is mainly used to

present a clause in a more readable form.
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Len = Len’+1 A Sum = Amount*Value+Sum~” 0O
w_sum_and_len(Rest, Rates, Sum”, Len”),
member ((Currency, Value), Rates).

Notice that, because of this last operation, the definition of w_sum_and_len is now
recursive and it needs to traverse the list only once. Indeed, this operation consti-
tutes the crucial optimization step. We now show that the applicability conditions of
Theorem 7.2.10 were satisfied, and therefore that AV, ~o AV;. For this we use the

following proposition.

Proposition 7.3.2 Let ¢l : I/ < b0 B be the unique clause which defines Pred(H)
in the module M : (P, 7) and assume Pred(H) ¢ m. Then true O H is operationally
equivalent to b O B under Var(H) in M.

Moreover, if M": (P’ 7) is the module obtained by unfolding some atoms Aq,..., A,
in the body of ¢l such that Pred(A;) ¢ = for all « € [1,m], then true O H is opera-
tionally not-slower than b O B under Var(H) in M’

Proof. The first part is obvious. For the second one we prove the case in which only
one atom A is unfolded in the body of ¢l. The generalization to n atoms is immediate.
We first need the following.

Claim 7.3 Let cl, P, P’ and A be defined as above and let ¢ O I/ be a generic
query. Then, for any derivation £ : ¢ O F L d 0 D such that D does not contain

any renamed version of the atom A, there exists a derivation & : ¢ O F Loaopy
such that ¢ and ¢ are similar and [£'| < |£]. Moreover, if (a renamed version of)
clause ¢l is used in &, then |&'| < |£].

Proof. To simplify the notation in the following we will denote by A and ¢l also any
renamed version of the atom A and of the clause ¢l, respectively. We also assume
that B (the body of ¢l) has the form A, (. The proof is by induction on the number
of times h that ¢l is used in the derivation £.

For the base case h = () the thesis holds immediately, since P’ differs from P only
in the fact that the clause ¢l has been replaced for its unfolded versions.

For the inductive case A > 0 first observe that any occurrence of A in the derivation
¢ will eventually be rewritten by using a clause in P, since D does not contain the
atom A. Moreover, we can assume without loss of generality that the selection rule
used in £ is such that as soon as A appears in the derivation A is immediately
selected. In fact, to prove the claim clearly we can consider derivations up to ~, i.e.
we can identify similar derivations. Since conjunction of constraints is associative
and commutative, it is immediate to see that changing the selection rule of ¢ into the
one assumed before does not affect ~ equivalence. For the same reason we can also
assume that the bodies of clauses are suitably reordered.

According to these assumptions ¢ has the form

«a 0AL coo, L en(H=HyYrboC, AGL doC,K,G L doD
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where ' = (¢ A (H=H') A b AN (A= A") A k), arenamed version of the clause
A" kO K defines Pred(A) in P and the clause ¢l is not used in the derivation
o, K,G L doDb.

By inductive hypothesis there exists a derivation & in P’ which is similar to
& a 0A L c0C, H and such that &1 < |&|. By definition of unfold-
ing in P’ we find the (renamed version of the) clause H < b A (A = A) O K, (.
Therefore, by Definition 7.2.1, there exists a derivation &, in P’ which is similar to

g:a OA Loao C', K, G and such that |€5] < |&]. Since the clause ¢l is not used

indoC,K,G Lodno D, we can conclude that there exists a derivation & in P’
which is similar to £ and such that || < |£], thus completing the proof of the Claim.
O

To prove the Proposition consider now a generic m-derivation b 0O Bl enc.
Since in P we find the clause ¢l : H < b 0O B, clearly there exists also a m-derivation

£ true O H Lo ¢ 0 (7 such that
g(i)— e C ~ (i) D (7.12)

where & = Var(H) and ¢ is any (dummy) predicate symbol.

Note that in the derivation £ the clause ¢l is used at least once, since it is the
only clause defining Pred(H) in P. Moreover the hypothesis Pred(A) & = and the
definition of mderivation imply that €’ does not contain any renamed version of the
atom A. Therefore we can apply previous Claim thus obtaining that there exists a
derivation ¢ in P’ which is similar to ¢ and such that |&'| < |£]. This, together with
(7.12), Definition 7.2.1 and Definition 7.2.9 completes the proof. 0

Because of the above Proposition, denoting by c4 the constraint which appear
in the clause c4, we have that c; O w_sum_and_len(Rest,Rates,Sum”,Len”) is O-
equivalent to and O-not-slower than ¢, O exchange rates(Rates), weighted sum(Rest,
Rates, Sum”), len(Rest, Len”) y under { Currency,
Amount,Rest,Rates, Sum, Len } in AV;. Therefore the conditions of Theorem 7.2.10
are satisfied and AVERAGE ~» AV, holds. More generally, Proposition 7.3.2 shows
also that the applicability conditions given in Theorem 7.2.10 allow the replacement
to mimic, to a large extent, the unfold /fold transformation as defined in [96].

Finally, in order to let also the definition of average enjoy of these improvements,
we simply replace exchange rates(Rates), weighted sum(Xs, Rates, Sum), len(Xs,
Len) by w_sum_and len(Xs, Rates, Sum, Len) in the body of c1. After the cleaning-
up the resulting clause is

c6: average(List, Av) ¢« Len>0 A Av * Len = Sum 0O
w_sum_and_len(List, Rates, Sum, Len).

So, we have obtained the module AV3, consisting of the clauses c6, ¢3 and c5, where
we find a definition of average which needs to scan the list only once. The correct-
ness of this last transformation step, i.e. the compositional equivalence of AVs with
AV, (and consequently also with the original module AVERAGE), can be easily proven
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using Theorem 7.2.14 as follows. As before, because of Proposition 7.3.2 we have that

exchange rates(Rates), weighted sum(Rest, Rates, Sum”), len(Rest, Len~”)

is O-equivalent to w_sum_and _len(Rest, Rates, Sum”, Len”) under { Rest, Rates,

Sum’, Len” } in AV,. This equivalence holds also in AV,, since the correctness of the

first replacement implies AVy & AVy. From this it follows that ¢; O exchange rates(Rates),
weighted sum(Xs, Rates, Sum), len(Xs, Len) is O-equivalent to ¢c; O w_sum_and len(List,
Rates, Sum, Len) under {List, Av}. Moreover, w_sum_and len does not depend

on clause c1 in AVy. Therefore, from Theorem 7.2.14 it follows that AV; x~p AV, and

therefore, from the correctness of the previous transformation steps, that AVERAGE

o AVa, i.e. that the whole transformation is correct. O

7.4 Correctness wrt other congruences

In some cases one can be interested in preserving other kind of properties of modules
rather than their answer constraints. Indeed in the literature, together with the answer
constraint semantics [43], we find two other semantics for CI.P without negation. One
is the so-called C-semantics which was defined for pure logic programs [29, 39] and
then adapted to CLP (specifically for program’s transformation) in [14] by using
an operational definition. The C-semantics characterizes the most general answer
constraints of a CLLP program. The second, and more notable one, is the least model
semantics (on the relevant algebraic structure D) [51]. This semantics is the CLP
counterpart of the least Herbrand model and it is commonly considered the standard
declarative semantics for CLP.

In this Section we consider the congruences induced by these two semantics. We
show that we can easily adapt to both the contexts the applicability conditions used in
Theorems 7.2.10 and 7.2.14. Moreover, since these congruences are weaker than the
operational one, the resulting applicability conditions are weaker than the previous
ones, thus allowing more optimizations on the modules.

In order to define formally the new congruences we first need the following.

Definition 7.4.1 Let P, P’ be two programs, £ : ¢ 0O CL b0 Band gD e
b O B’ be two derivations starting in the same goal, let also & = Var(c¢ O (). We
say that

& is more general than &, £ < ¢,
iffDE 3608 — 3,0 0OR. O

Notice that D = 3_; bO B — 3_; ¥ O B’ holds iff, for each solution 8 of b,
there exists a solution §" of &' such that § and §' agree on the variables 7 and each
element in the conjunction B'# is also an element of the conjunction B. Tt is also
worth noticing that < does not represent “one side” of ~, since we can have that
€€ <€ and still € ¢

This is due to the fact that in the definition of ~ the goals have to be considered
as multisets, while here considering them as sets is sufficient. For instance, this
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is the case when we consider the derivations € : p(z) ~ = = y O ¢(y), ¢(y). and
& op(r) ~ 2w =y Daqly)
We can now define the C- and the M-congruence as follows.

Definition 7.4.2 (C- and M-congruence) Let M; and M, be CLP modules that

have the same set of open predicates. We say that
My and M, are C-congruent, My ¢ My,
iff, for every module N such that My & N and My & N are defined, we have that

for each refutation in M; @ N there exists a more general refutation in My & N and
vice-versa. Moreover, we say that

My and M, are M-congruent, My & My,

Iff for every module M such that M, & M and My & M are defined, we have that
My @& M and My @& M have the same least D-model. O

The operational congruence is stronger than the C-congruence, which in turn is
stronger than the M-congruence. This will be formally proved in the sequel. To
clarify the difference among the three kind of relations let us consider the following
simple modules where we assume the set of open atoms to be empty.

M]l Mgl Mql
p(X). p(X). p(X) X = Y+1 Op(Y).
p(0). p(0).

It is easy to check that no one of these three modules is operationally congruent
to another. On the other hand My is C-congruent (and therefore also M-congruent)
to My, while it is not C-congruent to M5. Finally, if the structure we refer to is the
one whose domain contains only the set of natural numbers, then M3 is M-congruent

to both M; and M,.

Note 7.4.3 For the reader familiar with the original definition of the C-semantics
[29] some explanations are in order here. The C-semantics of a pure logic program P
is defined indifferently as

(a) the set of atomic logical consequences of P, or
(b) the set of most general answers computed by P.

It is also proven ([68]) that, if the underlying language is infinite, then two pure logic
programs have the same C semantics iff they have the same least Herbrand model.

Now, the CLP counterpart of the C-semantics is defined in [14] just as the coun-
terpart of (b) above. The fact is that, for CLP programs the statements (a) and (b)
are not equivalent to each other. This is shown for example by the programs

pX) «X=a V X =b.
and

p(X) «X = a.

p(X) «X =b.
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Moreover, since in the CLP context we need the domain D for evaluating the
constraint, it makes little sense talking about the logical consequences of P (which
are the formulae ¢ such that P = ¢). On the other hand, it is meaningful talk about
the logical consequences of P “under D", by this we mean the set of formulae ¢
such that D | P — ¢. Now, since the domain of D determines the universe of our
interpretations and models, we have that two CL.P programs have the same “set of
atomic® logical consequences under D" iff they have the same least D-model, but
this does not imply that they have the same most general answers. Indeed, if we
consider the programs in M; and M3 above, we have that, if D is the usual additive
structure on the set of natural numbers, M; and Mj; (seen as programs) have the
same least D models, therefore the same set of logical consequences “under D", but
they do not have the same set of most general answers. Notice that this is the case
even though our structure contains the infinite set of constants corresponding to the
natural numbers. O

As before, we say that a transformation is (totally) C-correct (resp. M-correct)
iff it maps modules into C- (resp. M-) congruent ones. Of course, the weaker
the congruence we consider, the more operations we are going to be allowed on the
modules, but also the less “faithful” will be the resulting module. For example,
a typical operation which is C-correct but possibly not operationally correct is the
elimination of duplicated atoms in the body of the clause (see later).

7.4.1 Correctness wrt C-congruence

In this Subsection we provide the applicability conditions for the replacement op-
eration in the case we refer to the C-congruence. More precisely, we are going to
reformulate appropriately Theorems 7.2.10 and 7.2.14. This provides a generaliza-
tion of the result on the correctness of the replacement operation given in [14].

We start with a Theorem which gives a condition sufficient to guarantee that two
modules are C-congruent, thus providing a C-counterpart of Theorem 7.2.3. Tts proof
can easily be obtained from the one of Theorem 7.2.3 and thus it is omitted.

Theorem 7.4.4 Let M; = (P, 7) and My = (P, 7) be two modules. If; for each 7-
derivation & in M; there exists a m-derivation &; in M, such that & <& (1,7 € [1,2],
i # 7), then My ~¢ M. O

This result also shows that the C-congruence is strictly weaker that the operational
one. Now, in order to provide the C-version of the applicability conditions for the
replacement operation, we restate the Definitions 7.2.4 and 7.2.9 to adapt them to
the new context.

Definition 7.4.5 Let M = (P, 1) be a module, ¢; O C, and ¢, O Cy be two queries
and & be a tuple of variables. Then we say that

cy O ég is C-equivalent to ¢y O (:H under = in M

8Here we can consider atomic also a formula of the form p(X) + ¢ where ¢ is a constraint.



146 Chapter 7. The Replacement Operation for CLP Modules

iff for each m-derivation & : ¢ O C; L b; O B; there exists a m derivation -
; 0C; L b, 0B suchthat D= 3; 6,08 — 3: b, 08, (i £7,i,5€[1,2]).

Moreover, we say that
ey O Cy is C-not-slower than ¢; O Cy under 7 in M

iff for each m-derivation & : ¢ O C, L b, O B, there exists a mderivation &
Co O (:YQ ’\’1 bQ O ég SllCh that |£2| S |£1| a,nd D |: 3,57 b] O é] — 3,57 bQ O ég.

In this definitions all the derivations are supposed to be renamed apart wrt z. O

It is easy to see that the concepts of C-equivalence and of C-not-slower are weaker
than their operational counterparts given in Definitions 7.2.4 and 7.2.9. Intuitively,
the difference in terms of derivations lies in the fact that for the former we want a one-
to-one correspondence between all the partial derivations ending with open atoms,
while the latter requires this one-to-one correspondence to hold only for the “most
general” ones. Now when we refer to the C-congruence we can weaken the hypothesis
of Theorems 7.2.10 and 7.2.14 by replacing the concepts of equivalent and not-slower
by their C-counterparts. Namely, we have the following.

Theorem 7.4.6 (C-correctness) Let ¢l : A« ¢O C, F be a clause of the module
M : (P,m), and M’ : (P',m) be the result of replacing ¢ O C by d O D in cl. So
P = P\{c}U{cl': A=dDO D E}. If

e d 0 D is C-equivalent to ¢ O C' under Var(A, f?) in M and

— either d O D is C-not slower than ¢ O C' under Var(A, E) in M,
— or no predicate in 1) depends on Pred(A) in M,

then M =~ M’ O

Proof. We now show that: (a) for each m-derivation & in M’ there is a derivation
£ in M such that & < & and that (b) (the vice-versa) for each m-derivation £ in M
there is a derivation & in M’ such that £ < ¢. From Theorem 7.4.4 this will imply
the thesis.

Actually, the proof is almost identical to a combination of the proofs of Theorems
7.2.5, 4.3 and 4.7. So it is much more convenient if we just show how these have to
be modified in order to adapt them to the context of the C-congruence.

Part (a). In order to show that for each derivation ¢ in M’ there is a derivation
£ in M such that & < £ it is sufficient to apply the following syntactic changes to the
proof of Theorem 7.2.5:

o In each equation labeled by the 7 sign, we replace the ~ operator with > (where,

obviously, we define £ = ¢ iff & < ¢). ) )
o The equation (7.5) has to be replaced by D= 4. 000 By — 3.; b3 O Bs.

Part (b). In order to show that for each derivation £ in M there is a derivation
£ in M’ such that £ < £ it is sufficient to combine together the proofs of Theorems
4.3 and 4.7 and apply the following syntactic changes:

e In each equation labeled by the 7 sign, replace the ~ operator with <.
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e The equations (7.8) and (7.10) have to be replaced by: D = 3_; by O B, — 3 :b30 By
O

This result can also be seen as a generalization of Proposition 4.6 in [14]. In fact,
it is easy to check that when the hypothesis of that proposition are satisfied then
the replacing and the replaced conjunction are always C-equivalent to each other and
that the replacing conjunction is always not-slower than the replaced one (under an
appropriate set of variables).

The applicability conditions in the previous Theorem are weaker than the ones in
Theorems 7.2.10 and 7.2.14. This reflects the fact that some replacement operations
which are correct wrt C congruence may not be so wrt the operational one. A typical
example of a replacement operation which always satisfies the hypothesis of Theorem
7.4.6, but which is possibly not operationally correct, and therefore does not satisfy
the hypothesis of Theorems 7.2.10 and 7.2.14, is the elimination of duplicate atoms in
the body of a clause. Indeed, consider a program M consisting the following clause

cl: p(X,Y) +q(X,Y), q(X,Y).
qa,W).
q(W,b).

If we eliminate one of the atoms in the body of c1 then we lose the answer { X=a A
Y=b} to the query p(X,Y). For this reason the operation is not operationally correct.
However it is C-correct, in fact the most “general” answers to the query p(X,Y)
(which are { X=a} and { Y=b}) are not lost.

7.4.2 Correctness wrt M-congruence

In this subsection we give the M-counterpart of the results stated in the previous
one. We formulate (and prove correct) the applicability conditions for the replacement,
operation in case we want to preserve the M-congruence.

As we mentioned before, the M-congruence is strictly weaker then the C-congruence.
Indeed, we have already seen that two modules which are M-congruent do not need
to be C-congruent (consider previous programs My and M3). For the other implication
we have the following result, whose proof is given in the Appendix.

Proposition 7.4.7 If two modules are C-congruent then they are also M-congruent.
O

When considering the M-congruence we can further weaken the applicability con-
ditions for the replacement operation by defining the notions of M-equivalent and of
M-not-slower as follows.

Definition 7.4.8 et M = (P, 1) be a module, ¢; O C, and ¢, O Oy be two queries
and & be a tuple of variables. Then we say that

e O C s M-equivalent to ¢y O Co under # in M
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iff for each mderivation ¢; O C; L b; O B; and each solution 9; of b;, there exists a
derivation ¢; O (:Yj L b; O ]éj and a solution 9, of b; such that D B, — 137419'74
and #y = @y (1,7 € [1,2],0 # 7).

Moreover, we say that

ey O Cy is M-not-slower than ¢, O Cy under # in M

iff for each m-derivation & : ¢ O C, L by O B, and for each solution ¥, of by, there
exists a derivation & : ¢y O Cs L by O By and a solution ¥4 of by such that |&a] < &4,
D E B, — Bydy and 319, = #,.

Again, all the considered derivations here considered are supposed to be renamed
apart wrt . O

From this definition it follows immediately that the M-equivalence is the weakest,
of the three equivalences we have introduced, as it checks only the “ground” deriva-
tions. Theorem 7.4.6 can now be restated for the case of M-congruence as follows.

Theorem 7.4.9 (M-correctness) Let ¢l : A« cOC, K be a clause of the module
M : (P,m), and M’ : (P',m) be the result of replacing ¢ O C by d O D in cl. So
P = P\{c}U{cl': A=dDO D E}. If

o Ifd D Dis M-equivalent ¢ O C' under Var(A, f?) in M and

— either d O D is M-not slower than ¢ O C under Var(A, E) in M,
— or no predicate in 1) depends on Pred(A) in M,

then M~ M.

Proof. See Appendix O

7.4.3 The non-modular case

We discuss now how the previous results can be applied to the non-modular case, that
is when programs are considered as stand-alone units. In this case, since we do not
have to consider G-contexts, the notion of correctness for the replacement operation
is defined wrt the following equivalences.

Definition 7.4.10 l.et P, and P, be CLP programs. We say that P, and P, are

e operationally equivalent iff for each refutation in P, there exists a similar refut-
ation in P, and vice-versa,

o C-equivalent iff for each refutation in P; there exists a more general refutation
in P, and vice-versa,

e M-equivalent iff P; and P, have the same least D-model.

Here, the use of the term equivalence, rather than congruence reflects the fact that
we are not considering modules, but (stand-alone) programs.

According to the above definition, we say that the replacement operation on CI.P
programs is operationally (C-, M-) correct iff it maps programs into operationally
(C-, M-) equivalent ones.
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From previous definition it follows immediately that the non-modular case can
be naturally regarded as a particular instance of the modular one. In fact, if we
assume that the set of open predicates is empty, then the concepts of equivalence
and congruence coincide. Moreover, according to Definition 6.3.2 if 7 = (J, then
composition is allowed only between predicate disjoint modules, and, semantically,
this is like allowing no composition at all. Therefore the correctness results in the
non-modular case can be obtained by just setting m# = @) in Theorems 7.2.10, 7.2.14
and 7.4.6.

From the definitions it is also clear that the smaller is the set of open predicates,
the weaker become the applicability conditions needed to ensure correctness of re-
placement, for all the three congruences considered. In particular, the applicability
conditions for the non-modular case are quite weaker than the ones for the modular
setting.

7.5 Related papers and conclusions

In this section we try to highlight the similarities and the differences between the
approach we follow and the ones proposed in the literature.

Let us start by considering Maher’s paper [69], which, to the best of our know-
ledge, is the only paper in the literature that deals with the replacement operation in
the context of modular (constraint) logic programs. Firstly it should be mentioned
that [69] takes into considerations also the unfold and the fold operations, which are
beyond the scope of this chapter. Apart from that, the main difference between this
chapter and [69] is that Maher takes into consideration normal programs (i.e. pro-
grams which contain negated atoms in the bodies of their clauses). Since the tools
needed to handle normal programs are quite different and heavier than those suffi-
cient to deal with definite programs, it follows that the techniques adopted to prove
the correctness of the replacement operation are quite different as well, and compar-
ison between the two articles are difficult. For instance, the applicability conditions
of [69] guarantee the preservation of the Perfect Model Semantics [6, 81], which is
incomparable to the semantics used here. 1t is of no surprise then that if we restrict
our attention to definite programs, then our results extend those of [69]. In particular
each time that the requirements of [69] are satisfied also the hypothesis of Theorem
7.4.9 are satisfied as well. This implies that [69] requires the replacing conjunction to
be always independent from the modified clause (therefore forbidding the introduc-
tion of recursion via the replacement operation). Finally, another difference is due to
the fact that we adopt a more flexible definition of modular program, which allows,
for instance, mutual recursion among modules.

Apart from [69], in the literature we find only another paper which investigates
the replacement operation for CLP: The one by Bensaou and Guessarian [14]. In
[14] the authors provide applicability conditions for the replacement operation (and
also for the operations of unfold and fold, which, we repeat ourselves, have been
studied in Chapter 6 and are beyond the scope of this chapter) which guarantee
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the correctness of the operation wrt the C-semantics. Of course, the main difference
between the approach to the replacement operation given in this chapter and the one
of [14] is that in [14] modularity is not an issue. In any case, the C-correctness result
in Theorem 7.4.6 provides us with a generalization of Proposition 4.6 in [14]: each
time that the applicability conditions given in [14] are satisfied we can also apply the
replacement. The converse is not true (even in the non-modular case). For instance
the replacements performed in Example 7.3.1 are not feasible using the tools of [14].

In the Logic Programming Area

As we mentioned in the introduction, the replacement operation was introduced in the
area of pure logic programs by Tamaki and Sato in [96]. Tater, developments were
provided by the works of Sato himself [88], Gardner and Shepherdson [47], Bossi,
Cocco and Etalle [20], Proietti and Pettorossi [79, 80] and Cook and Gallagher [32].
The main improvement of this chapter over all the papers just mentioned is that we
take into consideration modular programs. So, in the rest of this section we restrict
our attention to non-modular programs, and we try, in this more restrictive case, to
highlight the other main differences (and relations) between our approach and the
other ones.

In [96] the replacement operation is part of an unfold /fold transformation system
and the applicability conditions are devised in order to fit with the other two oper-
ations. Apart from this, the main differences between this chapter and [96] are due
to the fact that the applicability conditions of [96] guarantee the correctness of the
operation wrt the least Herbrand model semantics, while we also consider stronger
semantics (the C and the operational semantics). Still there are some similarities
between [96] and this chapter which are worth noticing. Namely, the applicability
conditions given in [96] can also be seen as being based on two requirements:

(a) The replacing conjunction must be equivalent to the replaced one in P\{cl},
where P and ¢l are respectively the modified program and clause. Unfortu-
nately, as pointed out in [47], the fact of referring to P\{cl} rather than to P
alone, leads to an error in the applicability conditions.

(b) for each proof for the replaced query there has to be a corresponding proof for
the replacing one such that the rank of the latter is not greater than the rank
of the former. Intuitively, the rank of a proof can be associated to the size of a
proof tree. Of course this condition relates to (it actually inspires) the concept
of not-slower query which is extensively used here.

Later, Sato in [88] considered replacement of tautologically equivalent formulas
in the context of first-order programs. Being the context so different than the one
considered here, [88] is practically unrelated to this chapter.

A more related paper is the one of Gardner and Shepherdson [47]. [47] deals also
with the operations of unfold and fold in the context of normal program, however,
the section on replacement is quite separate from the rest of the paper, as it deals



7.5. Related papers and conclusions 151

with definite programs and refers to the C-semantics. In fact the main result of
[47] states that if the replacing conjunction is equivalent to the replaced one then
for every computation feasible in the original program P there exists a more general
computation feasible in the transformed program P’ and vice-versa. The introduction
of a loop is avoided by adopting a quite restrictive definition of equivalence: it is
required that the most general answers to the replaced and the replacing queries
are not affected by the presence or the absence of the modified clause ¢l in the
program. In practice both queries have to be semantically independent from the
modified clause. Therefore, for those programs (we hope the great majority) for
which semantic independence coincides with physical independence® Theorem 7.4.6
provides a generalization of Theorem 5.1 in [47] in the following two ways: (a) it is not
required that the replaced conjunction is independent from the (predicate in the head
of the) replaced clause, and (b) it provides a condition (the one that uses the concept
of being not-slower) that allows also the replacing conjunction to be dependent on
the (predicate in the head of the) replaced clause, therefore allowing the introduction
of recursion.

Going on with our small survey, we can now consider [20], which can be regarded
as the ancestor of this chapter. In [20], Bossi et al. give some conditions sufficient to
guarantee the correctness of the replacement operation wrt the operational semantics
(of Togic programs). Of course the main difference between this chapter and [20] is
that in the latter only non-modular logic programs are considered. Apart from that
there are other differences, namely

e [20] uses a quite more complicated yet more general method to prevent the in-
troduction of a loop: the replacing conjunction may be dependent on the head
of the replaced clause and still be slower than the replaced conjunction, as long
as the difference in “speed” (the delay) is bounded by the dependency degree
of the replacing conjunction on the head of the modified clause. In this sense
the approach we follow here is slightly more restrictive. However, we believe
that the gain in generality is not worth the loss in clarity. This applies in par-
ticular to this chapter, in which things are further complicated by the presence
of modularity. Recall that, as we mentioned in the introduction, one of our
main goals is to propose applicability conditions which are not “discouragingly
complicated”.

o A second difference is due to the fact that [20] referred to a bottom-up construc-
tion of the semantics. The top down method we adopted here is not only more

intuitive, but it also more flexible. In particular the second part of Proposition
7.3.2 is not obtainable with the tools of [20].

The results of [20] have also been applied to normal programs in Chapter 4 of this
thesis). These papers provide applicability conditions which guarantee the correctness
of the operation wrt Fitting’s and Kunen’s semantics.

Other related papers are the ones of Proietti and Pettorossi [80], and Cook and

9Here we say that a a query is physically independent from a clause A « B, if no predicate in
the query depends on Pred(A) in the sense of the Dependency Definition 7.2.13.
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Gallagher [32].

In [80] it is proposed a method based on program’s manipulation. The underlying
idea is the following: suppose that we want to obtain the program P’ from P by
applying a replacement operation. To guarantee total correctness, we may manipulate
(an augmented version of ) P via the syntactic operations of unfolding and folding until
we obtain a program () which validates syntactically the operation. This guarantees
that P’ will have the same operational semantics of P. This method is clearly totally
different (hence incomparable) from the one we propose.

Finally, Cook and Gallagher [32] present an approach to the replacement operation
which is based on termination analysis. In addition to the usual condition that
the replacing conjunction has to be equivalent to the replaced one, they avoid the
introduction of a loop by simply requiring (a subprogram of) the resulting program
to be terminating [5].

In the Functional Programming Area

Without pretending to be exhaustive, we want to mention a recent paper on the
replacement operation for functional programs which, independently, follows sub-
stantially the same approach we do. In [86], Sands guarantees total correctness by
requiring firstly the replacing expression to be equivalent to the replaced one and
secondly by avoiding the introduction of a loop by

e requiring the replacing expression to be independent from the modified clause
(corresponding to the method used in Theorem 7.2.14),

e or requiring the replacing expression to be an improvement over the replaced
one. This clearly corresponds to the condition we give in Theorem 7.2.10. The
underlying intuition given in [86] is that in this case, the evaluation of the repla-
cing expression converges “faster” than one of the replaced one, consequently,
all evaluations will converge faster in the transformed program than in the
original one and, parallelly, no dangerous loop may be introduced.

Concluding remarks

We have investigated optimizations of CILP modules based on the replacement trans-
formation. As discussed above, our results extend previous ones in the field of trans-
formations for logic programs in that we have defined applicability conditions for
replacement which guarantee that the original and the transformed module are se-
mantically equivalent under any @-context. These conditions have been instantiated
to consider three different semantic notions. Moreover, also when restricting to the
non-modular setting, we provide generalizations of previous results for replacement
of CLP programs.

We believe that our setting is suitable as a theoretical basis to define tools for the
optimization of CLLP modules. In particular, the applicability conditions which allow
one to obtain operationally congruent modules are the more natural for practical
applications, since answer constraints are the standard results of CLLP computations.
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7.6 Appendix

In this Appendix we give the proofs of Proposition 7.4.7 and Theorem 7.4.9. The
proof of the Theorem follows the guidelines of the one of Theorem 7.4.6. First we
introduce an operational characterization of the M-congruence. To this end we need
the following.

Definition 7.6.1 Let m be a set of predicate symbols, £ : ¢4 O A ~ b0 B be a
m-derivation, and # be a valuation. We say that

(£,0) is a m-derivation-solution pair,

If Dom(19) = Var(€) and 1 is a solution of b. O

When 7 is not specified in the previous definition we mean that ¢ can be any de-
rivation (and not just a m-derivation). Moreover, if £ is a derivation in M then we say
that (£, 0) is a pair in M. We now need to extend Definition 7.4.1 to derivation-solution
pairs. The underlying idea is that (&1, 601) < (&3, 02) iff & and & are derivations start-

ing in the same goal and & 6; < &06,. Therefore the following.

Definition 7.6.2 Let P, P’ be two programs, & : ¢4 O A L b 0B and £y

cy O AL b, O ]—N?Q be two derivations starting in the same goal. Let also #; and 0,
be solution of & and &, respectively. We say that

(&5, 0,) is more general than (&,601), (&1,01) =< (&, 60,),
if D= B0, — By, O
We can now characterize the concept of M-congruence.
Theorem 7.6.3 Let M; = (P, 7) and My = (P, m) be two modules. Equivalent
are

o for each m-derivation-solution pair (£, 6;) in M; there exists a m-derivation-
solution pair (§;,6;) in M; (i # j) such that (&, 0;) < (&, 0;),
o M ~ M M. O

Proof. An analogous result, for the case of pure logic programs, is proved in [22].
The extension to the CLP case is straightforward. O

This Theorem represents the M- counterpart of Theorems 7.2.3 and 7.4.4. Notice
that, as opposed to the previous cases, here we have a bidirectional implication. An
immediate consequence of this result is Proposition 7.4.7; let us state it again.

Proposition 7.4.7 If two modules are C-congruent then they are M-congruent.

Proof. Straightforward from Theorem 7.6.3 and Definitions 7.4.2, 7.4.1 and 7.6.2. O

Before proving Theorem 7.4.9 we need to strengthen Claim 7.2 as follows. Here
and in the following, given a derivation £ : ¢4 O A ~ b0 B, we say that the valuation

0 is a solution of £ if Dom(0) = Var(£) and 0 is a solution of b.
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Claim 7.4 Let P be a program, and ¢; A ¢, O Cy, (s be a query. Then, there exists
a derivation ¢ A g O (:Yh(}g Lodo D of length n iff there exist two derivations
& O (:H L dy O ]~71 and & @ ¢ O ég L dy O f)g such that

(1) D= f)17 f)g7 and d = d; A dj is satisfiable,

(i1) the variables that & and & have in common are exactly those that ¢; O C, and
cy O ég have in common,

(i) 16] + |6] = .

(iv) if 6 is a solution of ¢ then 0y, () is a solution of &,

(v) if 0y is a solution of & and 6 is a solution of &, such that #; and 05 agree con
the set of variables Var(e; O (:H) N Var(cy O (:YQ) then 6,60, is a solution of .
Moreover §10;|v o, = bi.

Proof. The first part coincides with Claim 7.2. The second part is a straightforward
consequence of the first one. 0

We can eventually prove the Theorem 7.4.9.

Theorem 7.4.9 (M-correctness) Tlet ¢l : A« cOC,FE be a clause of the
module M : (P,m), and M": (P, ) be the result of replacing ¢ 0 ' by d O D in ¢l.
So PP=P\{cd}U{cl': A=dDO D FE}. If

o Ifd D D is M-equivalent to ¢ O C' under Var(A, f?) in M and

— either d O D is M-not slower than ¢ O C under Var(A, E) in M,
— or no predicate in 1) depends on Pred(A) in M,

then M~ M.

Proof. As in Theorem 7.4.6 we divide the proof in two parts. In part (a) we prove
partial correctness: we show that for each pair m-derivation-solution (¢',8") in M’
there is a pair m-derivation-solution (£,6) in M such that (&', 0") < (£,0). In part
(b) we show the vice-versa: that for each m-derivation-solution (£,8) in M there is
a m-derivation-solution (&', 0" in M’ such that (£,0) < (£',0"). By Theorem 7.6.3
this implies the thesis. In the following, for the sake of simplicity, derivation-solution
pairs will be referred to simply as pairs, and, as in the proof of Theorem 7.2.5, we
follow Assumption 7.2.6.

Part (a). We proceed by induction on the length of the derivation. Let (£,0")
be a m-derivation-solution in M’.

Base case [€'| = 0. This case is trivial, as the derivations of length zero are the

ones of the form b0 B X b0 B.
Inductive step. By Claims 7.1 and 7.4 the derivation £ can be chosen of the form.

£ true 0 H X b0 B

where B contains only m-atoms and Var( H) N Var( B) = () (since € has length greater
than 0). By the definition of derivation it follows that there exists a (renaming of a)
clause of M’,

J—er, 01 (7.13)
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and a m-derivation
¢ (H=D)Ae 0L Xb0 B

such that |&'] = |'| 4+ 1, Var({") = Var(¢'), and @ is a solution of {’. By inductive
hypothesis there exists a pair ((,0) in M such that ((’,#") < ((, ). Now, if the clause
of (7.13) was also a clause of M (that is, if it was not a result of the transformation),
then there would exist a pair (£,0) in M such that (¢',0") < (£, 0), thus concluding the
proof of part (a). So we have to consider the case in which J « ¢;, O I e M\ M. Tn
this situation J ¢ ¢;, O I is exactly (a variant of ) the clause ¢’ : A+ d O D,E. By
appropriately renaming all the variables in the clauses and the derivations considered
so far, we can assume that (" is the derivation

¢ (H=A)Ando D, EX b0 B
By Claim 7.4 there exist two derivations (] and (} such that

¢:dobDp 0B,
G (H=MA0EX b0 B,
b=b Nbyand B= By, B,
Gl +1G1 = 1¢1 = Je— 1. M
Var(¢}) N Var(¢)) C Var(d O D)n Var((H = A) O F),

and such that 9'|V,,,T(C1/) is a solution of (] and '91|Var(65) is a solution of (5. By the
inductive hypothesis there exist two pairs ((1,n1) and ((3,12) in M, such that

G:doDX¥yo B
G: (H=A4)0 B b0 B,

<C17771> - <C11791|V!17’(C11)> and <C27772> - <C£791|Vﬂr7“(<é)>7
Var(¢r) N Var(() C Var(d O f)) N Var((H=A)0O ﬁ)

Since d O D is (M-)equivalent to ¢ O C under Var( A, f?) in M it follows that there
exists a derivation-solution pair ((3,7n3), where

(3 CDébeam B,
such that, if we let & = Var( A, ﬁ)7
™ |7: = T]q|7: a,nd D |: é] ™ — égng. (7]4)

By Assumption 7.2.6, the variables of b3 0 Bs which do not occur in d O D, do not
occur either in the derivations considered so far. Therefore the variables that (, and (3
have in common are certainly contained in z. This together with the fact that b7 A b3
is satisfiable and the left hand side of (7.14) implies that also b; A b} is satisfiable.
Then, by Claim 7.4, we can put together (3 and (, thus obtaining the derivation

Gt (H=A)AdO D, EX by a0 By, B
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such that 8, = non3 is a solution of (4 and
94|VH'T(C3) =13 a,nd 94|VW’(C2) =M. (7]5)

Since in M we find the clause ¢/ : A« ¢ 0 C, F, by the definition of derivation it
follows that there exists a derivation £ which uses only clauses of M such that € is

similar to
true 0 1 A2 bs A b3 0 By, B

and 04 is a solution of £. Since the variables that b O érj has in common with the
rest of this expression are certainly contained in Var(A, F), from (7.14) and (7.15)
it follows that £ < £, thus concluding the proof of part 1.

Part (b). We now show that for each m-derivation-solution (£,0) in M there is a
m-derivation-solution (¢, 6) in M’ such that (£,0) < (&,0"). The first part of this is
perfectly symmetrical to the one of Part (a): We proceed by induction on the length
of the derivation & in M.

Base case |£] = 0. This case is trivial, as the derivations of length zero are the

ones of the form b0 B b0 B.
Inductive step. By Claims 7.1 and 7.4, £ can be chosen of the form

£: true 0 H X b0 B

where B contains only matoms and Var(H) N Var(é) = (). By the definition of
derivation there exist a (renaming of a) clause of M,

J—er, 01 (7.16)
and a m-derivation
(: (H=NAe 0 LA b0 B

such that |&] = |[(] + 1, Var(() = Var(¢) and 6 is a solution of (. By the inductive
hypothesis, there exists a pair ((/,0") in M’ such that ((,0) =< ((',0"). Now, if
the clause of (7.16) was also a clause of M’ (that is, if it was not a result of the
transformation), then there would exist a derivation-solution pair (¢/,6) in M’ such

that (£,0) =< (',0'), thus concluding the proof of part (b).
So we hMa,Ve to consider the case in which J «— ¢, O [, € MN\A/[I In this situation,
J ¢, O [ is exactly (a variant of) the clause ¢/ : A« ¢ 0O C, . By appropriately
renaming all the variables in the clauses and the derivations considered so far, we can
assume that ( is exactly the derivation
(: (H=A)AnceOC,EX b0 B.
By Claim 7.4, there exist two derivations (; and (5 such that
C1 : CD(:YMZH 0 F}h
G (H=A4)0EXL b, 08,
b= b] A bQ and é = §17§27
Gl [Gl = Il = [€] =1
Var(¢r) N Var((y) C Var(e O C)N Var((H = A) 0O F),
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and such that '9|Var(C1) is a solution of (; and '9|Var(62) is a solution of (,.
From the fact that d O D is (M-) equivalent to ¢ O C under Var(A, F) in M it

follows that there exists a pair ((3,n3), where
Cgl (]D ﬁMqu §37

such that | )

for & = Var(A, F). We now have to distinguish two cases.

Case 1. First we consider the case in which d O D is (M=) not slower than ¢ O C
under Var(A, E) in M. Tn this case, we can assume that [Cs| <[]

There is no loss in generality in assuming that the variables of by O Bs which do
not occur in d O D do not occur in the derivations considered so far. Therefore, the
variables that (5 and (3 have in common are certainly contained in 2. From this,
the fact that by A by is satisfiable and the left hand side of (7.17) it follows that also
bs A by is satisfiable. By Claim 7.4, we can then put together (3 and (5, and obtain
the derivation

C4(H:A)/\(]Dﬁjﬁ’\]\ibq/\bgméqjég (7]8)

where we have that 6, = nyn3 is a solution of (4 and that

94|VH'T(C3) =13 a,nd 94|VW’(C2) =M. (7]9)

Here we have also that

Observation 7.6.4 the variables that b3 O B has in common with the rest of (7.18)
are certainly contained in Var(A, F).

Moreover, the following inequality holds: |(4] = |G|+ |G| < |G|+ G| =[] = €] —1.
Therefore, by the inductive hypothesis, there exists a pair (', ") such that ' : (H =
A AdD D, EX v A b, 0 BB and

(Garba) =< (. 0") (7.20)

Since in M’ we find the clause cl’ : A < d O D, 2, by the definition of derivation there

. o M - . .
exists a derivation & : true O H ~ b A 0, O By’ B} such that 6" is a solution of £

Now Observation 7.6.4, (7.17), (7.19) and (7.20) imply that ¢ < &', thus concluding
the proof of Case 1.

Case 2. We consider now the case in which d O D is not (M=) not-slower than
¢ O C under Var(A, F) in M. From the hypothesis it follows then that d O D is
independent from ¢l. So, the clauses used in (3 are also clauses of M’ and we have

that in M’ there exists a derivation (5 which is identical to (s, that is (5 : d O DR
bs O Bs. Moreover, since |(2]| < |£], by the inductive hypothesis there exists a pair
((5,m5) such that

¢ (H=A) o EX s 0B, and
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By Assumption 7.2.6, the variables that (5 and (; have in common are contained in
7. Therefore, from the fact that by A by is satisfiable and the left hand side of (7.17)
it follows that also by A by is satisfiable. The relation (7.21) implies that b3 A by is
satisfiable. From Claim 7.4 it follows that we can put together ¢ and (} thus obtaining
the derivation

C (H=A)AdO D, EX by A b, 0 By, B,

such that 8} = njn; is a solution of (§ and the following holds:
9:1|Va,r(c;) =mn3 and 9£1|Vr1r((é) = 77;- (7-22)

Since in M’ we find the clause ¢/ : A<« d 0O D, E. by the definition of derivation

there exists a derivation ¢ : true O H M by A b, O B., By such that 6, is a solution
of €. Since the variables that bs O Bs has in common with the rest of this expression
are certainly contained in Var(A, F), from (7.17), (7.22) and (7.11) it follows that
(£,0) < (&,0,), thus completing the proof. O



Chapter 8
On Unification-Free Prolog Programs

We provide new simple conditions which allow us to conclude that in case of several
well-known Prolog programs the unification algorithm can be replaced by iterated
matching. Asalready noticed by other researchers, such a replacement offers a possib-
ility of improving the efficiency of program’s execution. The results we prove improve
on those in our previous paper ([7]) both because they allow to prove unification-
freeness for a larger class of programs and queries and because the conditions are, in
many cases, checkable in a much more efficient way.

8.1 Introduction

Unification is the core of the resolution method employed by PROLOG, and its
efficiency has great influence on the overall performance of the interpreter. The
best sequential unification algorithm employs linear time (see for example Martelli-
Montanari [74]), and, most likely, this result cannot be improved by the adoption of
a parallel algorithm: Dwork et al. [36] have shown that, unless PTIME C NC (which
is quite improbable) unification does not admit an algorithm that run polilogarithmic
time using a polynomially bounded number of processors.

On the other hand, fast parallel algorithms are available for term matching: a
special case of unification where one of the terms is always an instance of the other
one [36, 37]. This motivates the research for sufficient conditions for the replacement,
of unification with term matching (see, for instance [34, 70, 13] and, more recently,
[7, 71]).

In Deransart and Maluszynski [34], Maluszynski and Komorowski [70] and Attali
and Franchi-Zannettacci [13], the problem was tackled by using modes. Intuitively,
a mode is a function that labels as input or output the positions of each relation in
order to indicate how the arguments of a relation should be used. A Timit of this
approach is that the input positions of the queries are expected to be filled in by
ground (i.e. variable-free) terms. Apt and Etalle [7] improved upon the previous
results by additionally using types, which allow to deal with non-ground inputs.

159
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Here, we generalize the results of [7]. The main tools of our approach can be
summarized as follows:

First, in addition to input and output positions, we introduce here /-positions.
Here “U” can be read as unknown, as the U-positions of a query can be filled in
by any term. It turns out that for many of the programs mentioned in [7] we could
simply turn some positions into U/ positions, both enlarging significantly the class of
allowed queries and, when this process was applied to the nonground input positions,
simplifying dramatically the method for proving that the program is unification-free.

Second, we now allow also pure terms to fill in output positions of the queries,
again this enlarges the class of allowed queries.

Finally, by following Apt [4], we adopt here a more flexible definition of well-typed
program.

As in our previous paper, the conditions we provide can be statically checked
without analyzing the search trees for the queries.

This chapter is organized as follows. In the next section we introduce the concepts
of solvability by sequential matching and of unification-free prolog program. Section
3 contains the basic definitions of modes and types, which are the main tools we need
in the sequel. Both concept are used in order to specify how the arguments of an
atom should be used, and, ultimately, to restrict the set of allowed queries. In section
4 we begin to tackle the problem of how to prove that a program is unification-free:
we introduce the definition of a Nicely Typed program and we show that, in some
cases, this concept alone is sufficient for our purposes. This section can be also seen
as an intermediate step: in the subsequent one we report the definition of Well-typed
program. Programs which are both Well and Nicely Typed are the ones that will
enable us to prove, in Section 5, our most general theorem (8.5.18). In Section 6 we
give a more restrictive version of our Main Theorem. The relevance of this result
lies in the fact that its applicability conditions can be tested in a much more efficient
way. Section 7 contains some practical examples, and in Section 8 we conclude by
comparing this chapter with our previous paper [7] and with another recent related
paper [71].

8.2 Preliminaries

In what follows we study logic programs executed by means of the LD-resolution,
which consists of the SI.D-resolution combined with the leftmost selection rule. An
SI.D-derivation in which the leftmost selection rule is used is called an L.D-derivation.
We allow in programs various first-order built-in’s, like =, #, > etc, and assume that
they are resolved in the way conforming to their interpretation.

We work here with queries, that is sequences of atoms, instead of goals, that is
constructs of the form « @), where () is a query. Apart from this we use the standard
notation of Lloyd [65] and Apt [3]. In particular, given a syntactic construct ¥ (so
for example, a term, an atom or a set of equations) we denote by Var(F) the set
of the variables appearing in F. Given a substitution 8 = {xy/t{,...,x,/t,} we
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denote by Dom(0) the set of variables {xy,...,2,}, by Range() the set of terms
{t1,...,1,}, and by Ran(0) the set of variables appearing in {t1,...,1,}. Finally, we
define Var(0) = Dom(8) U Ran(0).

Recall that a substitution 6 is called grounding if Ran(0) is empty, and is called
a renaming if it is a permutation of the variables in Dom(#). Given a substitution
f and a set of variables V| we denote by 8|V the substitution obtained from 6 by
restricting its domain to V.

Unifiers

Given two sequences of terms § = sy,...,5, and ¥ = tq,...,1, of the same length
we abbreviate the set of equations {s; = t1,...,5, = t,} to {5 = 1} and the sequence
$10,...,8,0 to 30. Two atoms can unify only if they have the same relation symbol,
and with two atoms p(3) and p(f) to be unified we associate the set of equations
{5 =1}. Tn the applications we often refer to this set as p(3) = p(1). A substitution
0 such that 30 = 10 is called a unifier of the set of equations {3 = 1}. Thus the set of
equations {5 = 1} has the same unifiers as the atoms p(3) and p(#).

A unifier 8 of a set of equations F is called a most general unifier (in short mgu)
of K if it is more general than all unifiers of K. An mgu 0 of a set of equations K is

called relevant if Var(8) C Var(F).

The following Lemma was proved in Lassez, Marriot and Maher [64].

Lemma 8.2.1 let 6; and #; be mgu’s of a set of equations. Then for some renaming
n we have 0, = 6. O

Finally, the following well-known Lemma allows us to search for mgu’s in an
iterative fashion.

Lemma 8.2.2 et Fy, Iy be two sets of equations. Suppose that 6; is a relevant
mgu of Ky and 65 is a relevant mgu of F36;. Then 6,0, is a relevant mgu of F; U F,.
Moreover, if Ky U Fy is unifiable then 6, exists and for any such #; an appropriate 6,
exists, as well. O

Solvability by (sequential) Matching

Following the notation of Apt and Etalle, [7], we begin by recalling the following
concepts.

Definition 8.2.3 Consider a set of equations £/ = {5 = 1}.

o A substitution # such that either Dom(0) C Var(3) and 30 = { or Dom(6) C
Var(t) and § = 10, is called a match for F.
o I is called left-right disjoint if Var(3) N Var(t) = 0. 0

Clearly, if E is left-right disjoint, then a match for F is also a relevant mgu of F.
The sets of equations we consider in this chapter will always satisfy this disjointness
proviso due to the standardization apart.
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Definition 8.2.4 let F be a left-right disjoint set of equations. We say that F is
solvable by matching if I/ is unifiable implies that a match for F exists. O

Consider a selected atom p(t1,...,1,) and the head p(s1,...,s,) of an input clause
used to resolve it. The unification mechanism tries then to find a mgu of the set of
equations t; = s1,...,1, = s8,. Sometimes such a set is not solvable by matching as
a whole, but it can be solved by a sequential matching, that is, by considering the
equations one at a time.

To formalize this idea we introduce the following notion.

Definition 8.2.5 et ) = F;,..., F, be a left-right disjoint sequence of (sets of)
equations.

e We say that F is solvable by sequential matching if I is unifiable implies that
for some substitutions #,....,0,, and for 7 € [1,n]
- K0, ...0; 4 is left-right disjoint,
- 0; is a match for F;0,...0,_4.

e We say that I is solvable by sequential matching wrt m if m is a permutation of
1,...,n, and
- Fr@)s- -+ Fx(ny is solvable by sequential matching. O

Note that when 6y, ..., 0, satisfy the above two conditions, then by Lemma 8.2.2
0165 ...0, is a relevant mgu of F.

This Definition corresponds to the one considered by Maluszynski and Komorowski
[70], and is slightly less general than the one of iterated matching given in [7], which
makes no explicit reference to the order in which the equations are to be solved. In-
tuitively, F is solvable by iterated matching iff there exists a 7 such that F is solvable
by sequential matching wrt .

Unification Free Programs

Recall that the aim of this chapter is to clarify for what Prolog programs unification
can be replaced by sequential matching. The following Definition is then the key one.
Here we denote by rel( A) the relation symbol of the atom A.

Definition 8.2.6

o let & be an LLD-derivation. et A be an atom selected in & and H the head
of the input clause selected to resolve A in €. Suppose that A and H have the
same relation symbol. Then we say that the system A = H is considered in &.

e Suppose that each system of equations A = H considered in the I.D-derivations
of PU{Q} is solvable by sequential matching wrt a permutation 7,4y, where
Trei(4) 18 uniquely determined by the relation symbol of A. Then we say that
P U{Q} is unification free. O

A slightly more flexible definition of unification-free program was given in Apt-
Etalle [7], where the equation A = H may be solvable by iterated matching, i.e. the
sequence m needs not to be determinable from the relations symbol of A.
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8.3 Types and Modes

The main tools that we are going to use in this chapter are types and modes. The
following very general definition of type is sufficient for our purposes.

Definition 8.3.1

e A fypeis a set of atoms with the same relation symbol;
e A fypeis a type for a relation symbol p. O

Notice that, as opposed to [7], here we are also considering types which are not closed
under substitution.

For the purpose of this chapter, types for relations are always built by suitably
combining set of terms.

Definition 8.3.2

o A ferm_type is a set of terms. O

Here, we sometimes overload the term fype to denote either a type or a term_type;
the actual meaning will be clear from the context.

Certain term_types will be of special interest:

U/ the set of all terms,

Var  the set of variables,

List  the set of lists,

BinTree  the set of binary trees,

Ground  the set of ground terms.

Of course, the use of the term_type List assumes the existence of the empty list []
and the list constructor [.].] in the language, and the use of the type Nat assumes
the existence of the numeral 0 and the successor function s(.), etc.

The following notation will be used throughout the chapter. Let p be an n-ary
relation symbol, and let Ty,..., T, be term_types. we denote by
p: Ty x...xT,
the type for p given by the following set of atoms.

{p(t1,....t,) | fori e[l ,n] t; € T;}

Given a program P, a typing for P is a function that associate to each relation
symbol pin P a type of the form p: T} x ... x T,,, consequently we also say that T;
is the term_type associated to the i-th position of p.

We need one final Definition.

Definition 8.3.3 let p: T} x ... x T, be the type for p.

o We say that an atom p(t1,...,1,) is correctly typed in his i-th position if ¢, € T};
o We say that an atom p(t1,...,1,) correctly typed if it is correctly type in all its
positions. 0
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In the sequel we assume that each program has a (n often unspecified) typing
associated to. The typing specifies how the argument of a relation should be used:
as a general rule, we expect that the atoms selected in a LLD-derivation are correctly
typed (to make sure of this we’ll introduce appropriate tools). Consider for instance
the well-known program append:

app([X | Xs], Vs, [X | Zs]) + app(Xs, Ys, Zs).
app(l], Ys, Ys).

append can be used for concatenating two lists, and this can be reflected by the
adoption of the following “natural” typing:

app : [last x List x Var

This typing expresses the fact that each time an atom of the form :- append(s, t,

u) is selected in by the (leftmost) selection rule, we expect s and t to be lists, and u

to be a variable. Multiple typings can be obtained by simply renaming the relations.
Before introducing modes, we need a last definition.

Definition 8.3.4

o We call an atom (resp. a term) a pure atom (resp. pure term) if it is of the
form p(#) with 2 a sequence of different variables.

o Two atoms (resp. terms) are called disjoint if they have no variables in com-
mon. O

To study solvability by matching, we keep in special consideration the following
term_types.

e Var - the set of all variables;
e Pt - the set of variables and pure terms;
o [/ - the set of all terms.

Notice that Var C Pt C UU. According to the typing used, we’ll make some
distinctions among the positions of an atom. Consider the case of a selected atom A
and the head H of an input clause used to resolve A. In presence of types, we expect
A to be correctly typed. It is then natural to consider the positions of A which are
typed Var or Pt, which are filled in by variables or pure terms as output positions, as
they contain no information. On the other hand for those positions which are typed
[/, since we really have no clue over the kind of parameter-passing that will take place
in them, we use the special name of U/-positions. The remaining positions will then
by convention be considered as input. These considerations are at the base of the
following Definition.

Definition 8.3.5 Let p: Ty x ... x T, be the type of the relation symbol p. We call
the i-th position of an atom p(t1,...,1,)

o A [Fpositionif T; =U

o An output position if T; = Var or T; = Pt;

e An input position otherwise. O
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This classification is actually a moding. Modes for logic programs were first
considered by Mellish [75] and then more extensively studied in Reddy [83] and in
Dembinski and Maluszynski [35]. Here we are departing from the previous works by
using also the mode U, which can be seen as a way to avoid to commit ourselves to
a specific mode when such a commitment is not necessary.

8.4 Avoiding Unification using the modes “U” and
“output”

In order to introduce the tools we need in a gradual manner, we begin by excluding
the presence of input positions.

Surprisingly, in many cases, this restriction does not represent a problem: in
order to pass the information from the selected atom to the head of the input clause
we can still use the U-positions. Consider for instance again the program append,
as we mentioned before, when it is used for concatenating two lists, the “natural”
typing is

append: List X List x Var.

Now, if we want to avoid the presence of input positions, we can simply use the
following typing.

append: U x U x Var

Notice that the first two positions are U-positions, while the third one is and output
one. The only practical difference between this and the “natural” typing is that in the
query app(s, t, u) we now allow s and t to be any term, rather than just list. This
is obviously no restriction. In general, using the U-positions for the parameter-passing
task has the advantage of flexibility: since every term belongs to U we are making
here no a priori assumption on the structure of the data. Moreover, as we’ll show
in the rest of this Section, proving unification-freeness is in this context particularly
simple.

Throughout this Section we assume that the atoms have only U- and output
positions: by Definition 8.3.5 this is equivalent to considering typings built only with
the following term types: U, Var and Pt.

Sequential Matching via Pure Terms

We start with a simple test allowing us to determine whether a given set of equations
is solvable by matching.

Lemma 8.4.1 (Matching 1) Consider two disjoint atoms A and H with the same
relation symbol. Suppose that

e one of them is ground or pure.

Then A = H is solvable by matching.
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Proof. Clear. O

Now let us go back to the example of the (correctly typed) selected atom A and the
head H of a clause used to resolve it. In order to apply the Matching 1 LLemma 8.4.1
to the part of A = H corresponding to the U-positions, since we have no information
about the shape of the terms filling in the U-positions of A, we have to impose some
restrictions on H. Here we call a family of terms linear if every variable occurs at
most once in it.

Definition 8.4.2 (U-safe”) An atom H is called U-safe” if the family of terms
filling in its U-positions is linear and consists of only variables and pure terms. 0O

The minus sign in U-safe” is motivated by the fact that in Section 8.5 we’ll
introduce a more general definition of U-safeness, which will also take into account
the presence of input positions. We need now one further notion.

Definition 8.4.3 An atom A is called output independent if each term occurring in
an output position is disjoint from the rest of A. O

Now we prove a result allowing us to conclude that A = H is solvable by sequential
matching.

Lemma 8.4.4 (Sequential Matching 1) Consider two disjoint atoms A and H
with the same relation symbol p. Suppose that p has no input positions. If

e A is correctly typed and output independent,
o H is U-safe™,

then there exists a permutation 7 such that A = H is solvable by sequential matching
wrt .

In particular, A = H is solvable by sequential matching wrt any permutation 7 of
1,...,n such that, according to the order given by 7(1),...,m(n), we have that the
UU-positions of p come first and the output positions come last.

Proof. Suppose that A = H is unifiable, we can then assume that A is p(si,...,s,)
and that H is equal to p(ty,....1,), where s1,...,8,,%1,...,1, have been reordered in
such a way that U-positions come first (on the left) and the output positions are the
rightmost ones.

We now need to prove that sy = 14,..., s, = 1, is solvable by sequential matching,
that is we need to find 6y,...,0, such that each 6; is a match of (s, = ;)01 ...6; 1.
For each 7, we distinguish upon the kind of position where the equation s; = #; is
found.

If s; = 1, is found in a U-position then, since H is UU-safe™, we have that 1, is
a variable or a pure term and Var(t;) N\ Var(6y...0; 1) = 0, so ;0,...0, 4 is still
a variable or a pure term and by the Matching 1 Lemma 8.4.1 (s; = ;)61 ...0, 4 is
solvable by matching.

Finally, if s; = #; is found in an output position then, from the assumptions we
made on A, it follows that s; is a variable or a pure term and that Var(s;,) N Var(6y,...,0,1) =
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0. So s;01,...,0; 4 is still a variable or a pure term, and by the Matching 1 TLemma
8.4.1 (s, = ;)01 ...0,_1 is solvable by matching. 0O

When A and H satisfy the conditions of this Lemma, we can then solve A = H by
sequentially matching one position at a time. Still, we can improve on this result by
showing that there exist some subsets of A = H which correspond to more than one
position and which can be solved by a single matching. This issue will be discussed
in the Appendix.

We need one further notion.

Definition 8.4.5 We call an LD-derivation /o driven if all atoms selected in it are
correctly typed and output independent. O

i/o driven derivations were introduced in [7], but the definition we give here is
more general than the previous one. This is due to the fact that now we consider also
U-positions, and that we allow Pt as a term_type for the output positions (in [7] the
only term _type allowed for the output positions is Var).

The Sequential Matching LLemma 8.4.4 allows us to combine the notions of U-safe
atom and of i/o driven derivation for concluding that P U {@} is unification free.

Theorem 8.4.6 Suppose that each predicate symbol occurring in P has no input
positions. If

o the head of every clause of P is U-safe™,

e all LD-derivations of P U{Q} are i/o driven.
Then P U{@} is unification free. 0

Taking care of the output positions: Nicely Typed programs

In order to apply Theorem 8.4.6 we need to find conditions which imply that all
considered I D-derivations are i/o driven. Since here we exclude the existence of
input positions, all we have to do is to ensure that the selected atom A is correctly
typed in its output position and output independent. For this we’ll introduce the new
concept of Nicely Typed program.

We start with the following notion which was introduced in Chadha and Plaisted
[27]. Here we use the notation of Apt and Pellegrini [9]: when writing an atom as
p(7, ), we now assume that o is the sequence of terms filling in the output positions
of p, while that 7 is the sequence of terms filling its remaining positions.

Definition 8.4.7 (Nicely Moded)

o A query pi(71,01), ..., pn(Tn,0,) is called nicely moded if 01,...0, is a linear
family of terms and for j € [1,n]

Var(r;) N (0 Var(og)) = 0. (8.1)

k=j
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e A clause
270(7:07 50) M (7:1 , 01 )7 S Pn(Fm 577,)

is called nicely moded if p1(71,01),. ... pu(Ts, 0,) is nicely moded and

Var(rq) N (0 Var(og)) = 0. (8.2)

k=1

In particular, every unit clause is nicely moded.
o A program is called nicely moded if every clause of it is. O

Thus, assuming that in every atom the output positions are the rightmost ones,
a query is nicely moded if

e cvery variable occurring in an output position of an atom does not occur earlier
in the query.

And a clause is nicely moded if

e cvery variable occurring in an output position of a body atom occurs neither
earlier in the body nor in a non-output position of the head.

So, intuitively, the concept of being nicely moded prevents a “speculative binding”
of the variables which occur in output positions  these variables are required to be

“fresh”.

From the definition it follows that, if the query is nicely moded, then the selected
atom is output independent. In order to fulfill the requirements of i/o drivenness we
also ask the output positions to be correctly typed. For this reason we introduce a
further Definition. Here and in the sequel, given an atom A, we denote by VarOut(A)
the set of variables occurring in the output positions of A. Similar notation is used
for sequences of atoms.

Definition 8.4.8 (Nicely Typed)

e A nicely moded query B is called nicely typed if it is correctly typed in its
output positions.

e a nicely moded clause H < B is called nicely typed if B is nicely typed, and
each term t filling in a position of H of type Pt satisfies the following

If t is a variable and t N V(ITO?M(F}) # () then ¢ fills in a position of B of type
(8.3)
o A program is called nicely typed if every clause of it is. O

Nicely typed programs can be seen as a generalization of simply moded programs
of [7]. The additional condition (8.3) that we impose on the clauses is needed to
ensure the persistence of the notion of being nicely typed, which is proven in the
following key Lemma.

Lemma 8.4.9 An [.D-resolvent of a nicely typed query and a disjoint with it nicely
typed clause is nicely typed. 0

Pt.
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Proof. Consider a nicely typed query A, A and a disjoint with it nicely typed clause
I « B, such that A and H unify. Take as Fy the subset of A = H corresponding to
the non-output positions, and as Fy, ..., F, the subsets of A = H each corresponding
to an output position.

The proof is divided in steps.

Claim 8.1 There exist f,,...,0, such that, for 7 € [0, n],

(a) 60, is a relevant mgu of F;0q...0, 4,
(b) Bby,...,0; is correctly typed in its output positions.

Proof. We proceed by induction.

Base case: 1 = 0.
Let 0y be any relevant mgu of Fy. Since I < B is nicely moded, the variables
n Var()ut(é) do not occur in the non-output positions of H, therefore the output
positions of B are not affected by . Since by hypothesis B is correctly typed in its
output positions, By is correctly typed in its output positions as well.

Induction step: 7 > 0.
Let F; = s = t, where s and t are the terms filling the i-th output position respectively
of A and H. First notice that since A is nicely moded, the variables of s do not occur

anywhere else in A. Moreover, from the disjointness hypothesis (and the relevance
of each #;) it follows then that Var(s) N Var(f,...0, 1) = (. Therefore we have that

590 R 9{,1 =S

Keep in mind that by the inductive hypothesis Bfy...0;,_ is correctly typed in
its output positions, and that s = sy...6; 1. Since A is nicely typed, s may only
be a variable or a pure term. Let us consider those two cases separately, and let us
suppose that s is

a variable. Then we can take 6; to be exactly [s/tfq...0,_1]. Therefore Dom(0;) =
s, and é@o ...0; 1 is not affected by 0;, and the result follows from the inductive
hypothesis.

a pure term. Since A is nicely typed, the type of the the i-th output position of A
(and H) must be Pt. Let ; be any relevant mgu of s6y...0;, 1 = 16, ...0;
We have to distinguish three cases:

First we consider the case in which t0,...0,_¢ is a variable and it occurs in
Var()ut(é@o ...0;_1). Obviously, in this case t itself is a variable as well. Now
notice that if r is any term filling in an output position of B then we have that

it Var(rfo...0, 1)Nt0y...0,  £0 then Var(r)nit =10 (8.4)

In other words, if r is disjoint from ¢ then also rfy...60; 1 is disjoint from
t0y...0,_1. This is due to the fact that, since H « B is nicely moded, the
variables of r may not occur in the input positions of H but only in the output
ones, and, since A is output independent, the substitutions #y...0;,  cannot
bind them to other variables of I « B.
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Since 10, ...0;_1 occurs in Var()ut(é@o ...0;,1), from (8.4) it follows that t oc-
curs in VarOut( B). Furthermore, from (8.4) and the fact that H < B is nicely
typed it follows that t0y...0; ¢ fills in an output position of é@o ..o.0; 4, and
(being H + B nicely moded) it does not occur anywhere also in é@o 0,4,
Now, sfy...0; ¢ is a pure term and 10y ...60; | is a variable, therefore we have
that t0y...0; 10; is a pure term, and, since tfy...0; ¢ fills in an output pos-
ition of By...0;_; of type Pt, from the inductive hypothesis it follows that
Boq...0,_10; is correctly typed in its output positions.

Secondly, if tfy . .. 0; 1 is a variable and it does not occur in VarOut(B)0y... 0, 1,
then the output positions of Bfy...0; | are not affected by 0;, and the result
follows by the inductive hypothesis.

Finally, if t0y...0,_1 is not a variable, then, since sf,...0; (= s) is a pure
term, and since (s = #)fy...0; 1 is unifiable, we have that t0y...6;, ¢ is an
instance of sfy...0,_1. We can then take 6; such that Dom(6;) = sby...60; 1.

It follows that 10, ...0; 4 is not affected by 8, Consequently, By ... 0, 1 is not
affected by 0; as well and the result follows from the inductive hypothesis.

This ends the proof of Claim 8.1. O

Now let # = 6y ...0;,. By Lemma 8.2.2 § is a relevant mgu of A = H. So far we
have established that

B0 is correctly typed in its output positions. (8.5)

In order to prove that also (é, A)H is nicely typed we have to go through a few
more steps.

Claim 8.2 Af is correctly typed in its output position.
Proof. A is nicely moded, therefore VarOut(A) N Var(A) = 0. Since 6 is relevant,

from the disjointness hypothesis it follows then that Var(0) N VarOut(A) = (. Since
A is correctly typed in its output position, also Af is. O

Finally we have that
Claim 8.3 (B, A)f is nicely moded.

Proof. This is due to the fact that the resolvent of a nicely moded query and a
(digjoint with it) nicely moded clause is nicely moded (Apt and Pellegrini in [9,
Lemma 5.3]). O

From (8.5) and the last two Claims it follows that (é, A)H is nicely typed. Now
f=10,...0, s just one specific mgu of A = H. By Lemma 8.2.1 every other mgu of
A = H is of the form 0n for a renaming 1. But a renaming of a nicely typed query
is nicely typed, so we conclude that every LD-resolvent of A, A and H < B is nicely
typed. O

The following is an immediate consequence of Lemma 8.4.9 which will be soon
needed.
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Corollary 8.4.10 let P and ) be nicely typed, and let & be an L.D-derivation of
PuU{Q}. All atoms selected in & are correctly typed in their output positions and
are output independent. O

Avoiding Unification with Nicely Typed Programs

Recall that in order to prove that P U {@} is unification-free using Theorem 8.4.6 we
are looking for conditions which imply that all the [.D-derivations starting in () are i/o
driven and that, since we are excluding the presence of input positions, this reduces
to requiring that the selected atom are correctly typed in their output positions and
output independent. By Corollary 8.4.10 the concept of being nicely typed is the one
we need.

Lemma 8.4.11 Suppose that each predicate symbol p occurring in P has no input
positions. If

e P and Q are nicely typed.
Then all LD-derivations of P U{Q} are i/o driven.

Proof. This follows directly form Corollary 8.4.10. O
We can now state the main result of this Section.

Theorem 8.4.12 Suppose that each predicate symbol p occurring in P has no input
positions. If

e P and () are nicely typed,
e the head of every clause of P is [U-safe”

Then P U{@} is unification free.

Proof. From LLemma 8.4.11 and Theorem 8.4.6 O

This result, though rather simple, can be applied to a large number of programs.

Example 8.4.13
(i) Consider again the program append, together with the following typing:

app @ U xUx Pt

First note that append is nicely typed and that the head of both clauses are U-safe™.
Now let t, s be terms, and u be a variable (or a pure term), disjoint from t, s;
append (t,s,u) is then a nicely typed query, and, from Theorem 8.4.12, it follows
that append U { app(s, t, u)} is unification free.

(i1) append can he used not only for concatenating two lists, but also for splitting a
list in two. This is reflected by the adoption of the following typing:

app : Pix PixU
Again, append is nicely typed, and the head of both clauses are U-safe™. Theorem
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8.4.12 yields that, for disjoint terms u, v ,t, where u and v are variables or pure
terms, append U { app(u, v, t)} is unification free.

i11) Let us now consider the following permutation program:
gp prog

perm(Xs, Ys) < Ys is a permutation of the list Xs.

perm(Xs, [X | Ys]) «
appl(X1s, [X | X2s], Xs),
app2(X1s, X2s, Zs),
perm(Zs, Ys).

perm([], [1).

augmented by the appl and app2 programs.

Where both appl and app2 are renamings of the append program; we use here two
distinct renamings in order to adopt two different types, namely

appl : Pt x Pt xU
app2 : U xUx Pt

By the previous example we have that both appl and app2 are nicely typed. Let us
consider the following typing:

perm : U x Pt

It is easy to check that permis nicely typed, and that both clause’s heads are U-safe™.
Hence, when u a variable or a pure term disjoint from t, permutation U { perm(t,
u) } is unification free. O

More examples of programs and typings that satisfy the hypothesis of Theorem
8.4.12 are provided by the list in Section 8.7.

8.5 Avoiding Unification using also the mode “in-
put”

In the previous Section we have been using only the modes U and output. Therefore
the parameter passing from the selected atom to the head of the input clause was
always done via the U-positions. As we remarked before, this has the advantage of
flexibility, as there is no assumption on the data structure used. However, in some
cases, if we can be more precise about the kind of data structure is being used, we’ll
be able to broaden the range of of programs and queries that we can prove to be
unification-free. Consider for instance the well-known member program.

member (Element, List) <+
Element is an element of the list List.

member (X, [X | Xs]).
member (X, [Y | Xs]) < member(X, Xs).

It is easy to check (see Example 8.6.7 for a formalization of this statement) when
the typing is member : Pt x U, member satisfies the conditions of Theorem 8.4.12,
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therefore if s is in Pt and t is disjoint from s, then member U { member(s, t) }
is unification-free. On the other hand, it is also easy to (manually) check that if we
know that t is ground, then we can drop the assumption that s is in Pt: member U
{ member (s, t) } is still unification-free. In order to capture this situation, we need
an extension of Theorem 8.4.12 that is applicable when the typing adopted is member
: U x Ground. Tn this situation, according to the convention of Definition 8.3.5, the
second position is moded as input.

In this Section we provide the tools necessary to handle the presence of input
positions. First notice that by Definition 8.3.5, the input positions of an atom are
exactly the ones that are not typed Var, Pt or U. Consequently, considering also
input positions tantamounts to considering also term _types which are not in { Var,
Pt, U}

The new types we interested in are monotonic, that is, they are closed under
substitution. This property will simplify a lot the discussion.

Definition 8.5.1 We call a term_type T monotonic iff, for each substitution 0
o t €T impliesth e T O

From now on we make the following Assumption.

Assumption 8.5.2

o with the exception of term_types Var, Pt, all the term_types we refer to are
monotonic. O

Notice that types Ground, U are by definition monotonic. Recall that we assume
also that the type associated to a relation symbol p is always of the form p: Ty x...x
T,. The basic implication of Assumption 8.5.2 is then that the T;s corresponding to
the input positions are always monotonic term_types.

Sequential Matching via Generic Expressions

Generic expressions were introduced by Apt-Etalle in [7], and can be used to obtain
a new interesting condition for solvability by matching. For example, assume the
standard list notation and consider a term ¢ = [z, y|z] with z,y and z variables. Note
that (despite the fact that ¢ is not a pure term), whenever a list [ unifies with ¢, then
[ is an instance of ¢, i.e [ =1 is solvable by matching.

Thus solvability by matching can be sometimes deduced from the shape of the
considered terms. In this subsection we will follow closely Apt and Ftalle [7], and we
begin with the following Definition.

Definition 8.5.3 l.et T be a term_type. A term ¢ is a generic expression for T if
for every s € T disjoint with ¢, if s unifies with ¢ then s is an instance of ¢. O

In other words, f is a generic expression for the term_type T iff all left-right
disjoint equations s = ¢, where s € T, are solvable by matching.

Example 8.5.4

o 0, s(x), s(s(x)), ... are generic expressions for the term_type Nat,
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o [], [#], [z|y], [*,y]|z], ... are generic expressions for the term _type List. O

Note that a generic expression for T' needs not to be a member of T.

Next, we provide some important examples of generic expressions which will be
used in the sequel. Here and in the following we call a (term_) type T' ground if
all its elements are ground, and non-ground if some of its elements is non-ground;
consequently the non-ground positions of an atom H are those positions of H whose
associated term_type is not a ground type.

Lemma 8.5.5 l.et T be a term_type. Then

e variables are generic expressions for T,
o the only generic expressions for the term type U are variables,
o if T does not contain variables, then every pure term is a generic expression

for T,

o if T'is ground, then every term is a generic expression for 7.

Proof. Clear. O

When the term _types are defined by structural induction (as for example in Bron-
sard, Lakshman and Reddy [23] or in Yardeni, T. Frihwirth and E. Shapiro [98]),
then it is easy to characterize the generic expressions for each type by structural
induction.

We can now provide another simple test for establishing solvability by matching.

Lemma 8.5.6 (Matching 2, [7]) Consider two disjoint atoms A and H with the
same relation symbol. Suppose that

e A is correctly typed,
e the positions of H are filled in by mutually disjoint terms and each of them is
a generic expression for its positions type.

Then A = H is solvable by matching. Moreover, if A and H are unifiable, then a
substitution § with Dom(0) C Var(H) exists such that A = H0.

Proof. Clear. O

Consider again the case of a selected atom A and the head H of a clause used
to resolve A. In presence of arbitrary term_types, in order to apply the Matching 2
LLemma 8.5.6 to the subset of A = H corresponding to the input positions, we have
to impose some restrictions on H.

Definition 8.5.7 An atom H is called input safe if each term ¢ filling in a non-
ground input position of H satisfies the following two conditions:

(i) tis a generic expression for this positions type,
(i1) tis disjoint from all the other terms occurring in the non-ground input positions

of H. O

We also need to upgrade the Definition of U-safe™ atom in order to take into
account the presence of input positions.
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Definition 8.5.8 (U-safe) An atom H is called U-safe if for each term ¢ filling in
one of its U-positions one of the following two conditions holds:

(i) tis a variable or a pure term and it is disjoint from the terms occurring in the
input and the other U/-positions of H;
i1) each variable occurring in ¢ appears also in an input position of H of ground
g PP put p g
type. O

Note that when there are no input positions this Definition coincides with the one
of U-safe™ atom.

The above two conditions reflect two different way in which we can apply the
Matching 1 Lemma 8.4.1 to the U-positions of A = H: the first conditions ensures
that the term in the position we are considering is a variable or a pure term, and that
it is not affected by the matching of the input and the other U-positions. On the other
hand the second makes sure that after having matched the input positions of A = H,
the term will be ground, so that the Matching 1 Lemma will still be applicable.

The above Definitions allow us to generalize Lemma 8.4.4 to the case in which we
have also input positions.

Lemma 8.5.9 (Sequential Matching 2) Consider two disjoint atoms A and H
with the same relation symbol. If

e A is correctly typed and output independent,
e H is input safe and U-safe,

Then there exists a permutation 7 such that A = H is solvable by sequential matching
wrt .

In particular, A = H is solvable by sequential matching wrt any permutation of
1,...,n such that, according to the order given by 7(1),...,m(n), we have that the
non-ground input positions of p come first, the ground input positions come next, the
UU-positions come after them and the output positions come last.

Proof. Suppose that A = H is unifiable, we can then assume that A and H are equal
respectively to p(s1,...,8,) and p(ty,...,1,), where s1,...,8,, t1,...,1, have been
reordered in such a way that non-ground input positions come first (on the left),
the ground (input) positions come next, the U-positions come third and the output
positions are the rightmost ones.

We now need to prove that sy = 14,..., s, = 1, is solvable by sequential matching,
that is we need to find 6,...,0, such that each 6, is a match of (s, = ;)6 ...0; 1.

Let T; be the term fype associated to the i-th position of p. Fach equation s; = ¢;
corresponds to one position of A = H, we now distinguish four cases upon the kind
of position the equation s; = 1, corresponds to.

First we consider the case when s; = 1, corresponds to a non-ground input posi-
tion. Since H isinput safe, ; is a generic expression for T; and Var(t;) N Var(0y...0,_1) =
0, so t;0,...0;, 4 is still a generic expression for T; and, since #;...60; | are relevant,
t;0)...0; 1 is disjoint from s;0,...60;, 1. Moreover, A is correctly typed, thus s; be-
longs to T}, and, since by Assumption 8.5.2, T} is monotonic, s;6; ...60; 1 belongs to
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T; as well. From the Matching 2 Lemma 8.5.9 it follows then that (s; = ;)6 ...0;
is solvable by matching.

Second, we consider the case when s; = 1, corresponds to a ground input posi-
tion. Since A is correctly typed, s; is a ground term. From the Matching 1 Lemma
8.4.1 it follows then that (s, = #;)0;...6; 1 is solvable by matching. Moreover, if
t'77 ..
(t;y... tg)0y ... 0 are ground terms.

Third, if s; = t; is found in a U-position then, depending on which of the two

., 1 are the terms found in the ground input position of H, we also have that

conditions of [/-safeness is satisfied we have that: (i) ¢; is a variable or a pure term
and Var(t;) N Var(0y...0, 1) = 0, so t;6,...0;_ is still a variable or a pure term
and by the Matching T Lemma 8.4.1 (s; = #;)0;...0,_1 is solvable by matching;
(it) Var(t;) € Var(t;,..., 1) and, by the order hypothesis, the equations 1,... k
have already been processed, from what noticed before it follows that ¢,0,...0; 4
is a ground term, and again, by the Matching 1 Lemma 8.4.1, (s; = #;)01...0,4 is
solvable by matching.

Finally, if s; = 1, is found in an output position then s; is a variable or a pure term
and, since A is output independent, Var(s;,) N Var(0y,....0; ) =0. So s;01,...,0;
is still a variable or a pure term, and by the Matching T Lemma 8.4.1 (s; = ;)61 ... 0,
is solvable by matching. O

This allows us to generalize Theorem 8.4.6. Recall that an 1.D-derivation is called
i/o driven if all atoms selected in it are correctly typed and output independent.

Theorem 8.5.10 Suppose that

e the head of every clause of P is input safe and U-safe,

e all LD-derivations of P U{Q} are i/o driven.
Then P U{@} is unification free. 0

Taking care of the input positions: Well-Typed Programs

In order to apply Theorem 8.5.10, we need again to find some conditions sufficient
to ensure that the [.D-derivations will be i/o-driven. As in the previous Section, the
output positions will be taken care of by the fact that the programs we consider are
nicely typed. Consequently, our concern is now to guarantee that the selected atoms
will be correctly typed in their input positions. In presence of arbitrary term _types,
the task is not trivial.

Substantially, the approach that we follow here is originally due to Bossi and
Cocco [17], where it was used for proving partial correctness. We use the concept
of Well-Typed program, which was introduced by Bronsard, Lakshman and Reddy
[23], and we adopt the notation of Apt [4].

We begin with the following Definition, where we assume that the input positions
of atom are grouped on the left.

Definition 8.5.11 Let rel(A): Ty x ... x T, be the type associated to the relation
symbol of the atom A. Assume that the input positions of A are its leftmost m
positions, then
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o the pre-type for rel(A) is the type
preeay s T <o x Ty x U xooox U

and it is obtained by projecting rel(A) : Ty x ... x T, onto its input positions.
O

The pre-type of rel( A) is then uniquely determined by the type of rel( A); therefore
from the assumption that each relation symbol has always a type associated to it it
follows that each relation symbol has automatically also a pre-type associated to. The
advantage of referring to the pre-type instead of the type is that by Assumption 8.5.2
the pre-type is always monotonic.

To give the definition of Well-Typed program we need two more notions.

Definition 8.5.12 l.et Ay,..., A,y be atoms and Ty,..., 7,41 be monotonic types

e By a type judgement we mean a statement of the form
|: AAeETTN...NA,ET, = An—l—1 67:7,4_1
which denotes that, for all substitutions 8, Dom(0) = Var(Aq,..., A,):

ﬂc Aﬂg - 7—1 AL A Awe - 7:7 then An+19 - 7:7,4_1
O

Recall that in order to apply Theorem 8.5.10, we have to prove that each selected
atom belongs to its pre-type; to do this we use type judgements and associate to each
relation symbol also a post-type.

Definition 8.5.13 A post-type for a relation symbol p, is a monotonic type for p. O

From now on we assume that each relations symbol has, together with the type,
also a post-type associated to it.

As opposed to the type, we want the post-type to contain information about
the state of the arguments of a query after the query itself has been successfully
resolved. For example, consider again the program append. A typical typing for
it is app: List x List x Pt'. This formalizes the idea that when and atom of the
form app(s, t, u) is selected, we expect s and t to be variables and u to be a
variable, or, at most, a pure term. On the other hand, we require the post-type to
hold some knowledge over the situation of s, t and u after that the query app(s,
t, u) has been successfully resolved. In this situation a natural post-type would be
postapy = List x List x List, indicating that, after app(s, t, u) has succeeded, we
also expect u to be a list. Notice also that when the type adopted is the above one,
the the pre-type is preaps @ List x List x U.

In the following we write pre(A) (resp. post(A)) as shorthand for A € pre,.(a)
(resp. A € preml(A))7 where pre,.ay and post,.4) are the pre- and post-type of the
relation symbol of A.

"This is a slight extension of the “natural” typing app: List x List x Var that we mentioned in
Sections 8.3 and 8.4
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Definition 8.5.14
o A query Ay,..., A, is called well-typed if, for 5 € [1,n],

E post(Ay) A ... A post(Aj_1) = pre(A;).
o A clause H « By,.... B, is called well-typed if, for j € [1,n + 1],
E pre(H) A post(By) A ... A post(Bj_1) = pre(B;),

where pre(B,i1) := post(H).
o A program is called well-typed if every clause of it is. O

Thus, a query is well-typed if
e the pre-type of an atom can be deduced from the post-types of previous atoms.
And a clause is well-typed if

o (7 € [1,n]) the pre-type a body atom can be deduced from the pre-type of the
head and the post-types of the previous body atoms,

o (7 =n+1) the post-types of the head can be deduced from the pre-type of the
head and the post-types of the body atoms.

In particular a query A is well-typed iff = pre(A), while a unit clause A « s
well-typed iff |= pre(A) = post(A).

The following result states the persistence of the notion of heing well-typed (see
Bossi-Cocco [17] or an account of it Apt-Marchiori [10]).

Lemma 8.5.15 (Persistence) An L.D-resolvent of a well-typed query and a well-
typed clause that is variable disjoint with it, is well-typed. O

This brings us to the following conclusion.

Corollary 8.5.16 let P and () be well-typed, and let & be an L.D-derivation of
P U{Q}. Then every atom selected in £ is correctly typed in its input positions.

Proof. A variant of a well-typed clause is well-typed and for a well-typed query
Av, .. A, we have | pre(Ay). 0O

Avoiding Unification with Well4+Nicely Typed Programs

Recall that in order to prove that P U{Q} is unification-free using Theorem 8.4.6
we are looking again for conditions which imply that all the L.D)-derivations starting
in @ are i/o driven: we want that the selected atom is correctly typed and output
independent.

The combination of the concepts of being well-typed and being nicely typed allows
us to deal with all the cases in which the types used satisfy Assumption 8.5.2: well-
typedness takes care of the input position, while nicely typedness takes care of the
output ones.

Lemma 8.5.17 Suppose that
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e P and () are nicely typed and well-typed.

Then all LD-derivations of P U{Q} are i/o driven.
Proof. It follows from Corollaries 8.5.16 and 8.4.10. O
This brings us to the main result of this chapter.

Theorem 8.5.18 (Main) Suppose that

e P and () are nicely typed and well-typed,

o the head of every clause of P is input safe and U-safe

Then P U{@} is unification free.

Proof. From LLemma 8.5.17 and Theorem 8.5.10. a

In particular, from the Sequential Matching 2 LLemma 8.5.9 it follows that each of
the equations A = H considered in the [.D-derivations can be solved by sequentially
matching (one by one) each of the atoms positions, provided that we observe the
following order: first the nonground input positions, then the ground input positions,
after that the U-positions and finally the output ones. In the Appendix we’ll show
how we can improve on this result by grouping some positions under the same match.

It is not difficult to check that this Theorem 8.5.18 generalizes our previous result,
Theorem 8.4.12. Indeed if the program P and the query @) satisfy the conditions of
Theorem 8.4.12, then, since the atoms have no input positions, we have that the
heads of the clauses of P are trivially input-safe and, by assigning to each predicate
symbol p the trivial post-type p: U x ... x U, we have that P and @) are well-typed.
Therefore P and () satisfy the hypothesis of Theorem 8.5.18 as well.

Example 8.5.19 Consider now the program permutation sort which is often used
as a benchmark program.

ps(Xs, Ys) ¢ permutation(Xs, Ys), ordered(Ys).

permutation(Xs, [Y | Ys]) «
select (Y, Xs, Zs),
permutation(Zs, Ys).

permutation([], [1).

select (X, [X | Xs], Xs).
select (X, [Z | Xs], [Z | Zs]) <« select(X, Xs, Zs).

ordered([]).
ordered ([X]).
ordered([X, Y | Xs]) «X < Y, ordered([Y| Xs]).

Let us associate to it the following typing,
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type post-type
ps : list x Pt List x st
permutation : [ast x Pt List x st
select : Pt x List x Pt U x List x List
ordered : [list List

Now, permutation sort is well-typed and nicely typed. Moreover, the heads of
all clauses are input safe and [U-safe’. By the Main Theorem 8.5.18 we get that for
a list s and a disjoint with it variable or pure term t, permutation sort U { ps(s,
t) } is unification free.

Observe that the terms [X] and [X, Y | Xs], filling in the input positions of,
respectively, the first and the third clause defining the relation ordered, are generic
expressions for List, but are not pure terms. In a sense we could say that [X] and
[X, Y | Xs] are nontrivial generic expressions. O

8.6 A simpler special case: Ground input positions

Sometimes, a lot of the machinery needed by Theorem 8.5.18 is actually superfluous.
In particular, this happens when the input positions are all of ground type. In
this case, instead of requiring the program to be well-typed, we can use the more
restrictive concept of well-moded program. This has two relevant advantages:

First, that we do not need to associate a post-type to each relation symbol.

Second, while checking that a program is well-typed is an algorithmically intract-
able problem, testing well-modedness can be done in polynomial (quadratic) time.
A discussion on the algorithmic tractability of the concepts used in this chapter is
reported in Section 8.6.1.

In this Section we’ll assume that the only term _type used for the input positions in
Ground. Tnformally, this means that the information we pass to the program consists
always of ground terms. By Definition 8.3.5 this is equivalent to assuming that we
use types which are built using only the following term types: Ground, Pt, Var, U.

Well-Moded programs

The concept of Well-Moded program is essentially due to Dembinski and Maluszynski
[35]; here we make use of the elegant formulation of Rosemblueth [85] and of the same
notation of [7]. In particular, when writing an atom as p(w, ), we now assume that
u is a sequence of terms filling in the input positions of p and that v is a sequence
of terms filling in the output and the U-positions of p (notice that this shorthand is
different from the one used for Definition 8.4.7).

Definition 8.6.1

2The latter statement is trivial, as there are no UU-positions: the fact that I/ appears in a post-type
18 of no relevance here.
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o A query pi(31,11), . pu(3a,1,) is called well-moded if for 7 € [1,n]

Var(s;) C 70 Var(t}).

j=1

e A clause
polfo, Sni1) = p1(S1,01), - oo pal(5ns 1)

is called well-moded if for 7 € [1,n + 1]

Var(s;) C 70 Var(t}).

J=0
o A program is called well-moded if every clause of it is. O

Thus, a query is well-moded if

e cvery variable occurring in an input position of an atom (7 € [1,n]) occurs in a
non-input position of an earlier (5 € [1,7 — 1]) atom.

And a clause is well-moded if

o (i € [1,n]) every variable occurring in an input position of a body atom occurs
either in an input position of the head (7 = 0), or in a non-input position of an
earlier (7 € [1,7 — 1]) body atom,

o (i = n+1) every variable occurring in an non-input position of the head occurs
in an input position of the head (7 = 0), or in an output position of a body
atom (7 € [1,n]).

It is important to notice that the concept of a well-moded program (resp. query)
is a particular case of that of a well-typed program. Indeed, if the only term _type
used for the input positions is Ground, and the post-type associated to each relation
symbol pis p : Ground x ... x Ground, then the notions of a well-typed program
(resp. query) and a well-moded program (resp. query) coincide.

The following [Lemma states the persistence of the notion of being well-moded. A
proof of it can be found in Apt and Marchiori [7].

Lemma 8.6.2 An [.D-resolvent of a well-moded query and a disjoint with it well-
moded clause is well-moded. O

The next result is originally due to Dembinski and Maluszynski and follows dir-
ectly from the definition of well-moded program.

Corollary 8.6.3 Tet P and () be well-moded, and let £ be an .D-derivation of
P uU{Q}. All atoms selected in £ contain ground terms in their input positions. 0O
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Avoiding Unification with Well-Moded Nicely Typed Programs

As we anticipated at the beginning of this Section, here we assume that the only
term _type used for the input position is Ground, this is equivalent to making the
following

Assumption 8.6.4 In this subsection we each predicate symbol has a type associated
to it of the form p: Ty x ... x T,, where for 7 € [1,n], T; € {Ground, Var, Pt,U}. O

Once again we are going to use Theorem 8.4.6 for proving that PU{Q} is
unification-free. Therefore we are looking again for conditions which imply that all
the L.D-derivations starting in ) are i/o driven: the selected atoms in a L.D-derivation
need to be correctly typed and output independent. As in the previous two Sections,
the concept of being nicely typed will take care of the output positions.

Since we are assuming that the input positions are always of ground type, from
Corollary 8.6.3 it follows that well-modedness is what we need for taking care of the
input positions.

Lemma 8.6.5 If Assumption 8.6.4 is satisfied and
e P and () are nicely typed and well-moded.
Then all LD-derivations of P U{Q} are i/o driven.

Proof. et A be a selected atom in an L.D-derivation of PU{Q}. By Corollary 8.6.3
the input positions of A are correctly typed, and by Corollary 8.4.10, A is correctly
typed in its output positions is output independent. O

This, together with Theorem 8.4.6, brings us to the following conclusion.

Theorem 8.6.6 If Assumption 8.6.4 is satisfied and

e P and (Q are nicely typed and well-moded,
o the head of every clause of P is [U-safe

Then P U{@} is unification free.
Proof. It follows directly from Lemma 8.6.5 and Theorem 8.4.6. O

It is easy to check that this is a special case of Theorem 8.5.18: if P and @) satisfy
its hypothesis, then P and ) are well-moded and, as we mentioned before, well-
moded programs (and queries) are a special case of well-typed programs in which
the only term _type used for the input positions is Ground. Therefore P and () satisfy
also the condition of being well-typed, moreover, we also have that the heads of P
are (trivially) input safe. Consequently P and @ satisfy the hypothesis of Theorem
8.5.18 as well.

Example 8.6.7

(i) First, let us go back to what we stated at the beginning of Section 8.5, and let us
consider again the program member. With the typing member: U/ X Ground, member is
well-moded and (trivially, as there are no output positions) nicely typed; moreover,
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all clause’s heads are {/-safe. By Theorem 8.6.6 if t is a ground term, then, for any
s, member U { member (s, t)} is unification free.

Let us compare this with what we could have obtained by using the result (namely,
Theorem 8.4.12) given in the Section 8.4. Without using input positions we can prove
that, when the following type is used:

member : Pix U

then member is nicely typed and all clause’s heads are {U-safe. By Theorem 8.4.12
this implies that if s is a variable or a pure term disjoint from t, then member U {
member (s, t)} is unification free. In this case, the advantage of Theorem 8.6.6 over
Theorem 8.4.12 is that we can allow s to be any term. The price we have to pay for
this is that Theorem 8.6.6 requires t to be ground. Symmetrically, Theorem 8.4.12
imposes no conditions on t (which can be then a nonground list, or any other term)
but requires s to be a variable or a pure term.

Notice also that, when the above types are used, Theorem 8.6.6 is not applicable,
as the program is not well-moded. This shows that Theorem 8.6.6 is not more general

that Theorem 8.4.12.

(i1) Consider now the MapColor program:

color map(Map, Colors) <+
Map is correctly typed using Colors.

color map([Region | Regions], Colors) <
color_region(Region, Colors),
color map(Regions, Colors),
colormap([], _ ).

color region(Region, Colors) <
Region and its neighbors are correctly colored using Colors.

color region(region(Name, Color, Neighbors) , Colors) <
select(Color, Colors, ColorsLeft),
subset (Neighbors, ColorsLeft).

select (X, Xs, Zs) <+
Zs is the result of deleting one occurrence of X from the list Zs.

select (X, [X | Xs], Xs).
select (X, [Z | Xs], [Z | Zs]) <« select(X, Xs, Zs).

subset (Xs, Ys) <«
each element of the list Xs is also an element of the list Ys.

subset ([X | Xs], Ys) < member(X, Ys), subset(Xs, Ys).
subset([] , _ ).

augmented by the member program.

Let us associate to it the following typing:
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colormap : U x Ground
color region : U x Ground
select : U X Ground x Pt
subset : U X Ground
member : [ X Ground

It is straightforward to check that with the above typing, MapColor is well-moded
and nicely typed. Since the head of all clauses are U-safe, by Theorem 8.6.6 we have
that, if t is a ground term, then, for any s, colormap U { colormap(s, t)} is
unification free. O

It is worth noticing that the U-positions have been used in (at least) two opposite
ways: in Section 8.4 we they were actually used as “input” positions, in the sense
that they were used to transfer information from the selected atom to the head of
the clause used to resolve it, while in Section 8.6 they were more used as “output”.
This becomes noticeable in the moment that we compare Example 8.4.13 with Ex-
ample 8.6.7. However, it should be mentioned that this distinction is not always so
clear: consider for instance the program select (which is a subprogram of the above
MapColor): A query select(s, t, u) can be used in two main ways: to delete
the element s from the list t and report the result in u, or as a generalized member
program, to report in s an element of t, and in u the remains of the list. In the first
case the first position is used as “input”, in the second as “output”, but for both
cases we can simply use the typing select : U x GGround x Pt. In this case the mode
U takes care of the ambivalence of the first position. Notice also that when we adopt
this typing the hypothesis of Theorem 8.6.6 are satisfied, therefore if t is ground, u
is in Pt and s is disjoint from s then selectUselect(s, t, u) is unification-free.

8.6.1 Comparing Theorems 8.4.12, 8.5.18 and 8.6.6: efficiency
issues

Theorem 8.5.18 is a generalization of Theorems 8.4.12 and 8.6.6, but the latter two
are much more suitable for being used in an automatic way.

In fact, it is worth noticing that the applicability conditions of Theorems 8.4.12
and 8.6.6 can be statically and efficiently tested: in order to check that a program is
nicely typed, well-moded and the head of its clauses are input safe, one can easily
find some naive algorithms whose complexity is quadratic in the size of the clauses
and linear in the number of clauses in a program. Indeed, all three concepts require
procedures like the following one.
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for each clause cl in P do
for each variable v occurring in cl do
begin
check that all the other occurrences of v in cl satisfy the
required conditions (this require re-scanning cl)
end

On the other hand, to test the hypothesis of Theorem 8.5.18 one needs to check
if some type judgements hold, and this is a much more complex problem, in fact,
for artificially built types, it can even be undecidable. Aiken and Lakshman in [2]
have investigated the problem of checking type judgements for monotonic types:
they prove that it is EXPTIME-hard and they state that no upper bound is known,
moreover, they show that also in the case that we use only discriminative types® then
the problem has a a lower complexity bound of PSPACE, and a upper bound of
NEXPTIME. In other words, even in this more restrictive case, the problem remains
highly untractable.

Thus, checking the conditions of Theorems 8.4.12 and 8.6.6 is much simpler than
checking the ones of Theorem 8.5.18, moreover, by checking the list in Section 8.7, one
can easily realise that the practical cases in which Theorem 8.5.18 is really useful are
a minority: in most cases Theorems 8.4.12 and 8.6.6 are sufficient for our purposes.

8.7 What have we done and what have we not done

What have we done: the List

To apply the established results to a program and a query, one needs to find ap-
propriate typings for the considered relations such that the conditions of one of the
Theorems 8.4.12, 8.5.18 or 8.6.6, are satisfied. In the table below several programs
taken from the book of Sterling and Shapiro [94] are listed. For each program it is
indicated for which typings these theorems are applicable.

In programs which use difference-lists we replace “\” by “”, thus splitting a
position filled in by a difference-list into two positions. Because of this change in
some relations additional arguments are introduced, and so certain clauses have to
be modified in an obvious way. For example, in the parsing program on page 258
each clause of the form p(X) + r(X) has to be replaced by p(X,Y) « r(X,Y). Such
changes are purely syntactic and they allow us to draw conclusions about the original
program.

We also report between parenthesis typings which are “subsumed” by other typ-
ings in the list, that is, typings for which there exists another typing which is more

3a discriminative type is a type built using to some specific rules which include a fixpoint set
construction; according to Aiken and Lakshman “The important restriction of discriminative set
expressions are that no intersection operation is allowed and all union are formed from expressions
with distinct outermost constructor”. Tn any case, discriminative types are descriptive enough fo
be able to handle all the examples presented here.
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general. We report them here because they provide further examples of typings wrt
which these programs are (unification-free and) well-typed (or well-moded).

program page Thm. Typing

member 45 8412 Pt xU
8.6.6 U x Ground
(8.5.18] Pt x List)

prefix 45 8.4.12 Pt xU
8.6.6 Ground x Ground
(8.6.6) (Pt x Ground)
(8.5.18] Pt x List)

suffix 45 8.4.12 Pt x U
8.6.6 Ground x Ground
(8.6.6) (Pt x Ground)
(8.5.18] Pt x List)

naive reverse 48 8412 U x Pt
8.6.6 Ground x U
(8.5.18] List x Pt)

reverse-accum. 48 8.4.12 U x Pt, UxUx Pt
8.6.6 Ground x U, Ground x Ground x U
(8.5.18 List x Pt, List x List x Pt)
delete 53 8.5.18 Ground x U x Pt

8.5.18 Ground x U x Ground
(8.6.6) (Ground x Ground x Pt)

select 53 8.4.12 Pt x U x Pt
8.4.12 U x Pt x U
8.6.6 U x Ground x Pt
8.6.6 Ground x Ground x Ground
(8.6.6) (Ground x Ground x Pt)
(8.5.18] Pt x List x Pt)

insertion sort 55 8.4.12 s: U x Pt, 12 U xUx Pt
(8.6.6) (s : Ground x Pt, i@ Ground x Ground x Pt)
(8.5.18]s : List x Pt, i: U x List x Pt)
quicksort 56 8.4.12 ¢q: U x Pt, p: UxUxVar xVar

(8.6.6) (¢ : Ground x Pt, p: Ground x Ground x Var x Var)
(8.5.18]¢q : lList x Pt, p: U x List x Pt)
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tree-member

isotree

substitute

pre-order

in-order

post-order

polynomial

derivative

hanoi

reverse_dl

58

58

60

60

60

60

62

63

64

244

8.4.12 Pt x U

8.6.6 U x Ground

8.6.6 Ground x Ground
(8.5.18] Pt x BinTree)

8.4.12 U x Pt

8.4.12 Pi x U

8.6.6 Ground x Ground
(8.6.6) (Ground x Pt)
(8.6.6) (Pt x Ground)
(8.5.18  BinTree x Pt)
(8.5.18] Pt x BinTree)

8.5.18 U x U x Ground x Pt

8.5.18 U x U x Pt x Ground

8.5.18 U x U x Ground x Ground

(8.6.6) (Ground x Ground x Ground x Pt)
(8.6.6) (Ground x Ground x Pt x Ground)

8.4.12 U x Pt
8.6.6 Ground x U
(8.5.18  BinTree x Pt)

8.4.12 U x Pt

8.6.6 Ground x U
(8.5.18  BinTree x Pt)
8.4.12 U x Pt

8.6.6 Ground x U
(8.5.18  BinTree x Pt)
8.6.6 Ground x U

8.6.6 Ground x U x Pt
R8.6.6 Ground x U x Ground

8412 U x U xU xU x Pt

8.6.6 U x Ground x Ground x Ground x U

8.4.12 r: U x Pt,

rdl: U x Pt xU

187

8.6.6 r: Ground x U, r_dl : Ground x U x Ground

(8.5.18]r = List x Pt,

r_dl : List x Pt x List)
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dutch 246 8.4.12 dutch : U x Pt, di: U x Pt x Pt x Pt
8.6.6 dutch : Ground x U, di: Ground x Pt x Pt x Pt

dutch _dl 246 8.4.12 dutch : U x Pt, di: U x Pt x Pt x Pt xU

parsing 258  8.6.6 all Ground x U

What have we not done

Still, there are some natural programs that when executed do not require unification,
while they cannot be proven unification-free using our method. We are aware of the
following two examples: quicksort_dl and flattendl [94, pag. 244, 241].

First, let us consider quicksort d1.

qs(Xs, Ys) +qsdl(Xs, Ys, [1).

qsd1([X | Xs], Ys, Zs ) «
partition(X, Xs, Littles, Bigs),
qs_dl(Littles, Ys, [X|Yis]),
qs_d1(Bigs, Y1s, Zs).

qsd1([], Xs, Xs).

partition(X, [Y | Xs], [Y | Lsl, Bs) « X > Y, partition(X, Xs, Ls, Bs).
partition(X, [Y | Xs], Ls, [Y | Bs]) « X < Y, partition(X, Xs, Ls, Bs).
partition(X, [1, [1, [I).

By looking at the trace of the program, it is easy to see that, if t is a list and
s is a variable disjoint with t, then quicksort d1U{ qs(t, s) } is unification free.
Indeed, if we use the following types:

qs : list x Var
qsdl : list x Var x U
partition : U X [List x Var x Var

then we have that the heads of all the clauses are input safe and U-safe, moreover, we
can check “by hand” that, if { qs(t, s) } is correctly typed and output independent,
all T.D-derivations of quicksortdl U { qs(t, s) } are i/o driven, therefore, by
Theorem 8.5.10, quicksortdl U { gs(t, s) } is unification-free. The problem
here is that the program is not nicely typed: Yis appears first in the U-position
of qsd1(Littles, Ys, [XIY1s]) and then in the output position of qs_d1(Bigs,
Yis, Zs), therefore, with the tools in our possession, we cannot prove that the
derivations are i/o driven, in particular we can’t show that each time that an atom
of the form qs_d1(t, s, r) is selected, s will be a variable®.

Now, let us consider the program flatten d1.

Tt may be interesting to notice that, if we want to prove “by hand” that this program is
unification-free, then the key step is indeed represented by showing that each time that an atom of
the form qs_d1(t, s, r) is selected, s will be a variable.
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flatten(Xs, Ys) <« flattendl(Xs, Ys, []).

flattendl([X | Xs], Ys, Zs ) «
flattendl(X, Ys, Ysl),
flattendl(Xs, Ys1, Zs).

flattendl(X, [X | Xs], Xs) <«
constant(X), X # [ 1].

flattendl([], Xs, Xs).

Incidentally, the reasons why we cannot flatten_dl to be unification-free are the
same ones found for the program quicksort_dl. If we associate to it the following

types:

flatten : Ground x Var
flattendl : Ground x Var xU

We have that the heads of all the clauses are input safe and U-safe, and, in the case
that t is a list and s is a variable disjoint with t, all [.D)-derivations of flatten_dl
U { flatten(t, s) } are i/o driven, therefore, by Theorem 8.5.10, flatten dl U
{ flatten(t, s) } is unification-free. Again, the problem here is that the program
is not nicely typed: Yis appears first in the U-position of flatten d1(X, Ys, Ys1)
and then in the output position of flatten dl(Xs, Ys1, Zs); consequently, with
our tools we cannot guarantee the i/o drivenness of the derivations.

In the literature we do find tools that would enable us to prove these two pro-
grams to be unification-free, namely asserted programs. Assertions can be viewed
as extension of types, and provide a more expressive formalism for proving run-time
properties like groundness of terms and independence of variables (see Apt-Marchiori
[10]). Two are the reasons why we decided not to use assertions in this chapter: in
the first place, the machinery involved is far more complicated and computationally
expensive than with types, and when we use types in full generality we already face
the algorithmically intractable problem of checking type judgements. Secondly, the
only two programs that we know of that can be proven to be unification-free using
assertions and not with types are precisely flatten dl and quicksort_dl. Sum-
marizing, we strongly believe that the gain in generality is far not worth the loss in
clarity and efficiency.

Of course, the results of this chapter allow us to can prove quicksort_dl and
flatten_dl are unification-free wrt the following types:

gs : Ground x Ground
gsdl : Ground X Ground x U
partition : Ground X Ground x Var x Var

flatten : Ground x Ground
flattendl : Ground x Ground x U

However this are not the natural typings for these programs: for instance they require
that in the queries gs(t, s) and flatten(t, s) both t and s are ground terms. In
practice we have to know the result of the computation in advance.
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What cannot be done: when i1s unification needed

Considering the surprisingly large number of programs that could be proven to be
unification-free, in [7] we raised the question of whether unification was actually
intrinsically needed in Prolog programs: “A canonic example (of a program requiring
unification) is the Prolog program curry which computes a type assignment to a
lambda term, if such an assignment exists (see e.g. Reddy [84]). We are not aware
of other natural examples, though it should be added that for complicated queries
which anticipate in their output positions the form of computed answers, almost any
program will necessitate the use of unification.”

In one year we have been running into a couple of interesting examples. The first
one is the program append_dl [94, Pag. 241].

append d1(As, Bs, Cs) +
the difference-list Cs is the result concatenating the difference-lists As and Bs.
append d1(Xs \ Ys, Ys \ Zs, Xs \ Zs).

append_dl can concatenate the difference lists As and Bs in constant time, a relevant
improvement over the ordinary append, which takes linear time. However, it is easy
to see that in most cases append_dl does requires the use unification.

A second example is provided by the Prolog formalization of a problem from
Coelho and Cotta [31, pag. 193]: arrange three 1’s, three 2’s, ..., three 9’s in sequence
so that for all 7 € [1,9] there are exactly i numbers between successive occurrences
of 7.

sublist (Xs, Ys) < Xs is a sublist of the list Ys.
sublist(Xs, Ys) <« app(., Zs, Ys), app(Xs, _, Zs).

sequence(Xs) ¢+ Xsisa list of 27 elements.

Sequence( [—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:—:l ) .

question(Ss) <« Ssis a list of 27 elements forming the desired sequence.
question(Ss)
sequence(Ss),
sublist([1,_,1,_,1], Ss),
sublist([2,_,_,2,_,_,2], Ss),
sublist([3,_,_,_,3,_,_,-,3], Ss),
sublist([4,_,_,_,_,4,_,_,_,_,4], Ss),
sublist([5,_,_,_,_,_,5,_,_y_,—,_,51, Ss),
sublist([6,_,_,_,_y_y-y6,_y_y_y_y_,_,6]1, Ss),
sublist ([7, ey s Ty —s—s—s—s—sT1, S8),
sublist ([8, _, yyyymy s =38y —y—sey—s—s—8], Ss),
sublist (L9, y sy s =s Dy sy sy —s—s—,9]1, Ss).

augmented by the append program.

In this case Prolog provides a straightforward and elegant way of formalizing the
problem, however by looking at the trace of the execution it is easy to check that, in
order to run properly, the program fully uses unification.
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8.8 Conclusions

Relations with [7]

This chapter can be seen as an extension of Apt and Etalle [7]. Technically, the
main differences between this and [7] can be summarized as follows:

e In [7] only input and output positions are considered while here we introduce
and use U-positions as well.

e In [7] the only terms that are allowed to fill in the output positions of the queries
are variables. Here, by using the type Pt, we often allow the presence of pure
terms, and this broadens the class of programs and queries that we can prove
to be unification-free.

o Like in here, in [7], the programs considered needed always to be well-typed®,
however, the definition of well-typed programs used in [7] is more restrictive
than the present ones.

The practical consequence of these facts are manifold.

o The results can be applied to a larger class of programs.
FExamples of programs that could not be handled with the tools of [7] and that
can be handled now are permutation and color map.

e The results can be applied to a larger class of queries.
In almost all cases, programs which could be handled in [7] can be now handled
better, i.e. the class of allowed queries is now broader. To give a simple
example, let us consider the program member. Using the tools of [7], we can
prove to be unification-free wrt the following typings:

(1) member: Ground x Ground,
(2) member: Var x Ground,
(3) member: Var x List

On the other hand, using the tools given in this chapter we can prove member
to be unification-free wrt the following typings:

(a) member: U x Ground
(b) member: PixU

It is easy to see that the typing (a) is more general than hoth (1) and (2), while
(b) is more general than both (2) (again) and (3): the class of queries for which
we can prove unification freedom is now quite larger, and we can do this using
a reduced number of different typings (two instead of three), thus reducing the
machinery involved in the proof.

e The hypothesis of the theorems are often checkable in a much more efficient
way.
In order to provide an example, let us consider again the member program,
together with the typings given above. First recall that the typing (b) is more

Srecall that in the discussion after Theorem 8.5.18 we showed that, by appropriately choosing the
type and the post-type for a relation symbol, all the programs that satisfy the conditions of Theorem
8.4.12 or the ones of Theorem 8.6.6 are well-typed.
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general that both typings (2) and (3). Now, an important advantage of (b)
over (3) is the following: in order to use (3) we have to use Theorem 30 of
[7]® which requires to check some non-trivial type judgement, and this is, as
discussed before, an algorithmically intractable problem. On the other hand,
in order to prove unification freedom using typing (b), can use Theorem 8.4.12,
our simplest result, whose hypothesis can be simply and efficiently tested.
This situation is not incidental: by looking at the list of programs reported in
[7, Section 8]” and comparing it with the one in Section 8.7 of this chapter, we
see that in most of the cases in which we had some nonground input positions,
we could simply turn these positions into U-positions, and prove unification
freedom using Theorem 8.4.12 instead of Theorem 30 of [7], both enlarging the
class of allowed queries and simplifying dramatically the process of proving that
the program is unification-free.

Other related work

Another recent related work is the one of M. Marchiori [71]: Marchiori concentrates
on Well-Moded programs and studies mazimal localizations of the property of being
Unification-Free. In order to compare his paper with our chapter we have to introduce
a bit of notation. Let us be brief and informal.

We say that a property P is local if for any two programs P and () that satisfy
it, we have that the program P U () satisfies P as well. In other words, P is local if
it can be checked clause by clause. For instance the property “P is Well-Moded and
Nicely typed wrt the typing T 7 is local, while the property “there exists a typing
T such that P is Well- Moded and Nicely typed wrt it” is not local, as we need to
traverse the program more than once to check it (eventually we have to try different
Ts). We also say that a property Q@ is more general than P if each program that
satisfies P satisfies Q as well.

Now, the question addressed in [71] is the following:

e assume that to each relation symbol is already associated a typing of the form
p: Ty x...xT,, where, for each 1, T; € {Ground,U}. (8.6)

we want to find (if it exists) a local property P such that

— each program that satisfies P is Well-Moded (wrt the give typing (8.6));

— each program that satisfies P is Unification-Free;

— P is maximal, that is, there is no other local property @ which is more
general than P and that satisfies the above two conditions.

SRonghly speaking, [7, Theorem 30] is a restricted version of Theorem 8.5.18, and it is the most
general result of [7].

“the reader who actually does so has to be warned that the notation is a bit different: for instance
the type select ( :U, +:List, :List) of [7] corresponds to our type select : Var, List, Var. together
with the post-type select : U, List, List.
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In [71] it is proven that such properties exist, in particular two of them are defined
in detail®.  Of course there exist other maximal properties that satisfy the above
conditions.

Summarizing, the goal of [71] is quite different from our own: [71] focuses more
on the theoretical aspects of local properties in the context of well-moded program,
while here we want to provide (possibly simple) tools for proving unification freedom
for a (possibly) large class of programs and queries. Indeed the class of programs
and queries for which we can prove unification freedom is substantially larger than
in [71]; this is mainly due to two reason: firstly, because restricting to the class of
Well-moded program already narrows sensibly the set of allowed queries (recall that
of the programs of the List, the ones that are Well-Moded are the ones which are
proven to be Unification-Free via Theorem 8.6.6); secondly, because local properties
are, at least in this context, intrinsically rather weak.

8.9 Appendix: reducing the number of matches

Let A = p(3) and H = p(1) be two atoms. We know that if the hypothesis of the
Sequential Matching 2 Lemma 8.5.9 are satisfied, then the equations in § = # are
solvable, one at a time, by matching.

Here we want to show that some subsets of § = £ containing more than one equa-
tion can be solved by a single matching. This reduces the total number of matchings
needed to solve § = £, and results in an efficiency gain: since there are parallel al-
gorithms for term matching that run in polilogarithmic time [36, 37], matching more
positions at once increases the execution speed.

Lemma 8.9.1 Consider two disjoint atoms A = p(3) and H = p(f) with the same
relation symbol. Assume that A correctly typed and output independent, and that
H is input safe and U-safe. Let us now divide the set of equations § = £ into the
following subsets: let

o 5 = 1; he the subset of § =7 corresponding to the nonground input positions.
e i, = 15 be the subset of § =t corresponding to the ground input positions.

o 53 = 13 bhe the subset of § = # corresponding to the U-positions with respect to
which H satisfies condition (ii) of U-safeness (Definition 8.5.8).

o 5, = 14 be the subset of 3 = 1 corresponding to those of the remaining U-
positions of H which are filled in by a variable.

o 55 =15,...,5, =15 be the subsets of § = f such that for i € [5, k], each s; = ¢,
corresponds to one of the remaining {/-positions.

® Spi1 = thg1,.-.,5 = 1; be the subsets of § = £ such that for 7 € [k +1,1], each
s; = t; corresponds to a position of type Pt.

e 5141 = 1141 be the subset of § =1 corresponding to the positions typed Var.

8These two properties are named “(the property of being) Flatly-Well-Moded” and “coFlatly-
Well-Moded”



194 Chapter 8. On Unification-Free Prolog Programs

S1 = t17 52 = t27 53 = t37 54 = t47 Sy = t57 ce ey SE T tk7 Sk4+1 — tk+17. .S = th §]+1 = tl+1

is solvable by sequential matching.

Here notice that 3, = #y, 35 = 19, 33 = 13, $4 = 14 and 3§41 = t;41 are sets of
equations, and these are precisely the subsets of § = ¢ whose content can be processed
by a single matching.

Proof. We proceed as in the proof of Lemma 8.5.9: we’ll find some substitutions
O1,...,0; such that, for i € [1,1 4+ 1], 0, is a match of (s, = ;)01 ...0;_1 (here, for
the sake of precision, for 7 € {1,2,3,4,1 4+ 1}, we should have used bold letters, and
written (§; = 7:7)) We have to consider seven distinct cases.

In § = #;, since H is input safe, each term in #; is a generic expressions for the
type of the positions it corresponds to; moreover, the terms in #; are pairwise disjoint.
Since A is correctly typed, from the Matching 2 Lemma 8.5.6 it follows that & = 1
is solvable by matching. T.et §; be a match of §; = 1.

In (35 = 3)0;, since A is correctly typed, the terms in 3, are all ground. By the
Matching 1 Lemma 8.4.1 (3, = 7?2)91 is then solvable by matching. Let #; be a match
of it, and notice that #3600, is a set of ground terms.

In (33 = t~3)91927 becsuse of the way 33 = 13 was defined, we have that V(J,r(fg) C
V(J,r({g)7 therefore 130,05 is a set of ground terms. Again, by the Matching 1 LLemma
8.4.1 (83 = 53)9192 is then solvable by matching. Let 03 be a match of it.

In (3, = 7?4)9192937 by the way s4 = 14 was defined, 14 consists of distinct variables,
moreover Var(t}) N V(l?“(t~17...7t~3) = (). By the relevance of #;,60,, 05 (a match is
always a relevant mgu) we then have that 14010505 is a set of distinct variables.
Again, by the Matching T Lemma 8.4.1 (34 = 7?4)919293 is then solvable by matching.
l.et 64 be a match of it.

The equations (s5 = f5,...,8 = tp, Ske1 = tpar, ..., 8 = )0 ...0, are then
solvable (one at a time) by sequential matching. This follows at once from the proof
of the Sequential Matching 2 Lemma 8.5.9. In particular we have that: for 7 € [5, k],
since H is U-safe, ;0 ...0;_ is a variable or a pure term, while for 7 € [k+1,], since
A is correctly typed and output independent., 5,0, ...60; ; is a variable or a pure term;
here we (inductively) assume that for ¢ € [5,1], 0, is a match of (s, = ;)61 ...0; 1.

Finally, in (5141 = f101)01 . .. 0;, since A is correctly typed and output independent,
from the relevance of 8y, ..., 0; it follows that the terms in §;, .16, ...6; are all distinct
variables. Therefore, by the Matching 1 Lemma 8.4.1, (8,11 = t~1+1 )01 ... 0, is solvable
by matching. This proves the LLemma. O

In practice, Lemma 8.9.1 states that we can solve by a single matching each of
the following groups of positions:

e the nonground input positions.
o the ground input positions.
o the U-positions with respect to which H satisfies condition (ii) of U-safeness

(Definition 8.5.8).
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e those of the remaining U-positions of H which are filled in by a variable.
e the positions typed Var.

While the remaining positions should be processed one by one. These are

e the remaining U-positions.
e the position of type Pt.

The following FExample shows that these last positions actually need to be processed
one at a time.

Example 8.9.2

(i) Consider A = p(x, f(x,2)) and H = p(g(y), [(z,w)), together with the typing
p: U xU. We have that A is correctly typed and that H is UU-safe. Since here
there are no input nor output positions, it follows that the hypothesis of the
Sequential matching 2 Lemma 8.5.9 are satisfied, therefore A = H is solvable
by sequential matching. However A = H is not solvable by matching, as there
is no A such that Al = H or A = HA. This shows that the U positions of
H which are filled in by pure terms and for which H satisfies condition (i) of
U-safeness (Definition 8.5.8) need to be processed one at a time.

(i1) A perfectly symmetric reasoning applies for the positions typed Pt: consider
A =ply, f(z,w)) and H = p(x, x), together with the typing p: Pt x Pt. Alis
correctly typed and output independent, and since there are no input and U-
positions, this is sufficient to satisfy the hypothesis of the Sequential 2 LLemma
8.5.9. Therefore A = H is solvable by sequential matching, but not by a simple
matching. As before, this is confirmed by the fact that there is no # such that
A =H or A= Hf. O

Lemma 8.9.1 is an improved version of the Sequential Matching 2 Lemma 8.5.9,
which in turn was the crucial step of Theorem 8.5.18. Therefore, its basic implication
is that, when A and H are respectively the selected atom and the head of the input
clause used to resolve it, then some positions of A = H can be grouped in the same
match (while others may not).

For this reason, in some situations, we might find convenient to adopt a typing
which is more restrictive than another one, but which allows us to prove that we can
solve the equations in the .D-derivations with a smaller number of matchings.

Consider for instance once again the program append, suppose that we want to
use it for splitting a ground list in two. We might then want to adopt the following

typing:

T, = app: Pt x U x Ground

Here the (only) input position in the third one. From Theorem 8.6.6 it follows that,
if £ is a ground list, r is in Pt, then, for any term s disjoint from s, append U {
app(r, s, t)} is unification free.

However, if the kind of queries we are interested in are the ones in which the first
two positions of append are filled in by variables (and this is a common situation),
then we might find convenient to use the following typing:
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T2 = app: Var x Var x Ground

Of course Ty is more restrictive than T;: every query that is correctly typed wrt 7y
is also correctly typed wrt 77 (and not vice-versa). However, when we adopt Ty,
the best that we can prove is that all the equations considered in the I.D-derivations
of append U { app(r, s, t)} are solvable by friple matching: first we match the
rightmost position, then we match the middle one, and finally we match the leftmost
one. On the other hand, if we adopt 7Ty, from Lemma 8.9.1 it follows that all the
equations considered in the [.D-derivations of append U { app(r, s, t)} aresolvable
by double (rather than triple) matching: first we match the rightmost position, then
with a single match we can take care of the first two ones. Of course this holds
provided that the queries satisfy the conditions of Theorem 8.5.18 wrt the adopted
typing, and that is when they are correctly typed and output independent.

Finally, as a further example consider again the program select, which is re-
ported in Example 8.6.7. As we mentioned in the discussion after Example 8.6.7, a
query select(s, t, u) can be used in two main ways: to delete the element s from
the list t and report the result in u, or as a generalized member program, to report
in s an element of t, and in u the remains of the list. For both cases we can use the
typing

Ti = select: U x Ground x Pl

When we use this typing, (assuming that the query satisfies the hypothesys of The-
orem 8.5.18), from Lemma 8.9.1 it follows that all the equations condidered in the
LD derivations of select U { select(s, t, u) } are solvable by triple matching.
However, when select is used in the first of the ways outlined above, then the
first two arguments of the query are possibly ground terms. This allows us to use the
typing
Ts = select : Ground x Ground x Pt

in this case, by L.emma 8.9.1, the equations considered in L.LD-derivations of select
U { select(s, t, u) } are solvable by double matching: first we match simultan-
eously the first two positions, then we match the third one.

A similar reasoning applies when we want to use select only as a generalized
member program: we can reduce the number of matching needed in the I.D-derivations
by restricting the range of allowed queries, in particular by adopting the following

typing:

T3 = select : Var x Ground x Var

In this case, from Lemma 8.9.1 it follows that the equations considered in the
[.D-derivations are again solvable by double matching, but this time we (obviously)
match first the second position (the input one) and then, simultaneously, the first and
third one (again, here we naturally assume that the queries satisfy the conditions of

Theorem 8.5.18).
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Samenvatting

Het proefschrift is als volgt opgebouwd. Hoofdstuk 1 bevat een korte introductie op
het gebied van logisch programmeren en programma transformaties. In Hoofdstuk
2 wordt de semantiek van normale logische programma’s behandeld. Dit hoofdstuk
dient als introductie voor de daaropvolgende drie hoofdstukken. Daarnaast bevat
het hoofdstuk een nieuw resultaat waarin programma equivalentie met betrekking
tot de Kunen semantiek wordt gekarakteriseert. In Hoofdstuk 3 beginnen we met de
studie van eigenschappen van Unfold/Fold transformatie systemen. In dit hoofdstuk
bewijzen we dat de Unfold/Fold methode van Tamaki en Sato, toegepast op een ter-
minerend programma, resulteert in een programma dat zelf ook terminerend is. In
Hoofdstuk 4 introduceren we de vervangingsoperatie, en onderzoeken enkele nieuwe
toepassingscondities, in de context van normale logische programma’s. De resultaten
uit dit hoofdstuk worden in het daaropvolgende hoofdstuk gebruikt om nieuwe toep-
assingscondities voor de Fold operatie te vinden, die de correctheid van deze operatie
met betrekking tot de Fitting semantiek garanderen. In Hoofdstuk 5 definieren we
een transformatiesysteem voor zogenaamde ‘Modular Constraint Logic Programs’;
logische programma’s met een modulaire opbouw, waarin programmaregels rand-
voorwaarden kunnen bevatten. Daarnaast geven we een aantal toepassingscondities
die er voor zorgen dat het systeem compositioneel is; we bewijzen dat onder deze con-
dities de getransformeerde module dezelfde antwoordformules heeft als het orgineel,
ook wanneer deze modules met andere modules samengevoegd worden. In Hoofdstuk
6 gaan we dieper in op de problemen die spelen bij het transformeren van ‘Modular
Constraint Logic Programs’, met name bij de vervangingsoperatie. In dit hoofd-
stuk definieren we nieuwe toepassingscondities, onder welke tijdens de transformatie
bepaalde observeerbare eigenschappen behouden blijven, ook onder compositie van
modules. Er dient opgemerkt te worden dat, binnen onze aanpak, de toepassingscon-
dities niet gebonden zijn aan specifieke observeerbare eigenschappen. Het is vaak
mogelijk deze condities zodanig aan te passen, dat ze voldoen voor de observeerbare
eigenschappen waar we het meest in zijn geinteresseerd. In Hoofdstuk 7 laten we
programma transformaties voor wat ze zijn, en houden we ons bezig met programma
analyse. Het is algemeen bekend dat unificatie het hart is van de resolutie methode

205



206 Samenvatting

die in PROLOG gebruikt wordt, en dat de efficientie waarmee dit gebeurt een grote
invloed heeft op de prestaties van de interpreter. In dit hoofdstuk presenteren we
eenvoudige condities onder welke het mogelijk is unificatie te vervangen door ‘iterated
matching’, een procedure die een stuk efficienter is te implementeren dan unificatie.
We gebruiken deze condities vervolgens om aan te tonen dat ‘iterated matching’ vol-
staat bij een aantal veelgebruikte PROLOG programma’s. Met deze kennis is het
mogelijk de executie van deze programma’s te versnellen.
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